These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 6475661)
21. Low virulence potential and in vivo transformation ability in the honey bee venom treated Clinostomum complanatum. Rehman A; Ullah R; Jaiswal N; Khan MAH; Rehman L; Beg MA; Malhotra SK; Abidi SMA Exp Parasitol; 2017 Dec; 183():33-40. PubMed ID: 29069571 [TBL] [Abstract][Full Text] [Related]
22. The mechanism of trapping of immune complexes in experimental antigen-induced arthritis. Jasin HE Rheumatology; 1975; 6():288-92. PubMed ID: 128111 [TBL] [Abstract][Full Text] [Related]
23. Effects of bee venom on cholecystokinin octapeptide-induced acute pancreatitis in rats. Seo SW; Jung WS; Lee SE; Choi CM; Shin BC; Kim EK; Kwon KB; Hong SH; Yun KJ; Park RK; Shin MK; Song HJ; Park SJ Pancreas; 2008 Mar; 36(2):e22-9. PubMed ID: 18376296 [TBL] [Abstract][Full Text] [Related]
24. THE ROLE OF SERUM COMPLEMENT IN CHEMOTAXIS OF LEUKOCYTES IN VITRO. WARD PA; COCHRANE CG; MUELLER-EBERHARD HJ J Exp Med; 1965 Aug; 122(2):327-46. PubMed ID: 14316948 [TBL] [Abstract][Full Text] [Related]
25. Mechanism of action of honey bee (Apis mellifera L.) venom on different types of muscles. Nabil ZI; Hussein AA; Zalat SM; Rakha MKh Hum Exp Toxicol; 1998 Mar; 17(3):185-90. PubMed ID: 9587789 [TBL] [Abstract][Full Text] [Related]
26. Effect of honey bee venom on prostaglandin levels in mouse skin. Schmidt DK; Destephano DB; Brady UE Prostaglandins; 1978 Aug; 16(2):233-8. PubMed ID: 704930 [TBL] [Abstract][Full Text] [Related]
27. Lidocaine inhibits leukocyte migration and phagocytosis in monosodium urate crystal-induced synovitis in dogs. Paul H; Clayburne G; Schumacher HR J Rheumatol; 1983 Jun; 10(3):434-9. PubMed ID: 6887166 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of anti-inflammatory, anti-nociceptive, and anti-arthritic activities of Indian Apis dorsata bee venom in experimental animals: biochemical, histological, and radiological assessment. Nipate SS; Hurali PB; Ghaisas MM Immunopharmacol Immunotoxicol; 2015 Apr; 37(2):171-84. PubMed ID: 25689950 [TBL] [Abstract][Full Text] [Related]
29. In vitro peripheral airway constriction to honey bee venom in cat. Chand N; DeRoth L Vet Hum Toxicol; 1980 Aug; 22(4):244-7. PubMed ID: 7404985 [TBL] [Abstract][Full Text] [Related]
30. Neutralization of bee venom lethality by immune serum antibodies. Schumacher MJ; Egen NB; Tanner D Am J Trop Med Hyg; 1996 Aug; 55(2):197-201. PubMed ID: 8780460 [TBL] [Abstract][Full Text] [Related]
31. Bee venom therapy: Potential mechanisms and therapeutic applications. Zhang S; Liu Y; Ye Y; Wang XR; Lin LT; Xiao LY; Zhou P; Shi GX; Liu CZ Toxicon; 2018 Jun; 148():64-73. PubMed ID: 29654868 [TBL] [Abstract][Full Text] [Related]
32. Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-alpha production stimulated by LPS. Han S; Lee K; Yeo J; Kweon H; Woo S; Lee M; Baek H; Kim S; Park K J Ethnopharmacol; 2007 Apr; 111(1):176-81. PubMed ID: 17166679 [TBL] [Abstract][Full Text] [Related]
33. Suppression of immune complex-induced inflammation by the chemotactic factor inactivator. Johnson KJ; Anderson TP; Ward PA J Clin Invest; 1977 May; 59(5):951-8. PubMed ID: 140184 [TBL] [Abstract][Full Text] [Related]
34. Substantial role of locus coeruleus-noradrenergic activation and capsaicin-insensitive primary afferent fibers in bee venom's anti-inflammatory effect. Kwon YB; Yoon SY; Kim HW; Roh DH; Kang SY; Ryu YH; Choi SM; Han HJ; Lee HJ; Kim KW; Beitz AJ; Lee JH Neurosci Res; 2006 Jun; 55(2):197-203. PubMed ID: 16621078 [TBL] [Abstract][Full Text] [Related]
35. A double blind study on immunotherapy with chemically modified honey bee venom: monomethoxy polyethylene glycol-coupled versus crude honey bee venom. Müller U; Lanner A; Schmid P; Bischof M; Dreborg S; Hoigné R Int Arch Allergy Appl Immunol; 1985; 77(1-2):201-3. PubMed ID: 4008075 [TBL] [Abstract][Full Text] [Related]
36. Factors influencing the binding of large immune complexes to the primate erythrocyte CR1 receptor. Cornacoff JB; Hebert LA; Birmingham DJ; Waxman FJ Clin Immunol Immunopathol; 1984 Feb; 30(2):255-64. PubMed ID: 6692603 [TBL] [Abstract][Full Text] [Related]
37. Differences in complement-dependent chemotactic activity generated by bullous pemphigoid and epidermolysis bullosa acquisita immune complexes: demonstration by leukocytic attachment and organ culture methods. Gammon WR; Inman AO; Wheeler CE J Invest Dermatol; 1984 Jul; 83(1):57-61. PubMed ID: 6376640 [TBL] [Abstract][Full Text] [Related]
38. Antibody responses to honey-bee venom and monomethoxy-polyethylene glycol-modified honey-bee venom in mice. Ahlstedt S; Björkstén B; Akerblom E Int Arch Allergy Appl Immunol; 1983; 71(3):228-32. PubMed ID: 6602097 [TBL] [Abstract][Full Text] [Related]
39. Antioxidant activity of and interleukin production affected by honey bee venom. Rekka E; Kourounakis L; Kourounakis P Arzneimittelforschung; 1990 Aug; 40(8):912-3. PubMed ID: 2242083 [TBL] [Abstract][Full Text] [Related]
40. Electrical charge of the antigen determines its localization in the mouse knee joint. Deep penetration of cationic BSA in hyaline articular cartilage. van den Berg WB; van de Putte LB Am J Pathol; 1985 Nov; 121(2):224-34. PubMed ID: 3904468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]