These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6476826)

  • 1. Effect of restricted aeration on catabolism of cholic acid by two Pseudomonas species.
    Smith MG; Park RJ
    Appl Environ Microbiol; 1984 Jul; 48(1):108-13. PubMed ID: 6476826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A catecholic 9,10-seco steroid as a product of aerobic catabolism of cholic acid by a Pseudomonas sp.
    Park RJ; Dunn NW; Ide JA
    Steroids; 1986; 48(5-6):439-50. PubMed ID: 3445293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolic 9,10-secosteroids as products of the catabolism of bile acids by a Pseudomonas sp.
    Park RJ
    Steroids; 1984 Aug; 44(2):175-93. PubMed ID: 6537051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The major neutral products of the aerobic catabolism of cattle bile by Pseudomonas sp. ATCC 31752.
    Park RJ
    Steroids; 1981 Oct; 38(4):383-95. PubMed ID: 7314155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic catabolism of bile acids.
    Leppik RA; Park RJ; Smith MG
    Appl Environ Microbiol; 1982 Oct; 44(4):771-6. PubMed ID: 7149711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590.
    Tenneson ME; Baty JD; Bilton RF; Mason AN
    Biochem J; 1979 Dec; 184(3):613-8. PubMed ID: 540054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon catabolite regulation of phenylacetyl-CoA ligase from Pseudomonas putida.
    Martinez-Blanco H; Reglero A; Luengo JM
    Biochem Biophys Res Commun; 1990 Mar; 167(3):891-7. PubMed ID: 2322284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of and sensitivity to cholate in Pseudomonas sp. strain Chol1.
    Philipp B; Erdbrink H; Suter MJ; Schink B
    Arch Microbiol; 2006 Apr; 185(3):192-201. PubMed ID: 16432748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590 under anaerobic conditions.
    Owen RW; Bilton RF
    Biochem J; 1983 Dec; 216(3):641-54. PubMed ID: 6667260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of cholic acid by Arthrobacter simplex.
    Mukherjee E; Banerjee S; Mahato SB
    Steroids; 1993 Oct; 58(10):484-90. PubMed ID: 8256259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp].
    Fang XN; Huang W; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of phenol by Pseudomonas putida ATCC 11172 in continuous culture at different ratios of biofilm surface to culture volume.
    Molin G; Nilsson I
    Appl Environ Microbiol; 1985 Oct; 50(4):946-50. PubMed ID: 4083889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas.
    Luengo JM; Olivera ER
    Methods Mol Biol; 2017; 1645():109-142. PubMed ID: 28710624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. IV. Deconjugation of glycocholic acid, oxidation, and reduction of cholic acid by saccharolytic Bacteroides species (author's transl)].
    Edenharder R; Slemrova J
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(3-4):350-73. PubMed ID: 983540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of intestinal 7 alpha-dehydroxylation of cholic acid: evidence that allo-deoxycholic acid is an inducible side-product.
    Hylemon PB; Melone PD; Franklund CV; Lund E; Björkhem I
    J Lipid Res; 1991 Jan; 32(1):89-96. PubMed ID: 2010697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1.
    Birkenmaier A; Holert J; Erdbrink H; Moeller HM; Friemel A; Schoenenberger R; Suter MJ; Klebensberger J; Philipp B
    J Bacteriol; 2007 Oct; 189(20):7165-73. PubMed ID: 17693490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Characterization of Some Genes, Enzymes, and Metabolic Intermediates Belonging to the Bile Acid Aerobic Catabolic Pathway from Pseudomonas.
    Luengo JM; Olivera ER
    Methods Mol Biol; 2023; 2704():51-83. PubMed ID: 37642838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger.
    Kase BF; Björkhem I; Hågå P; Pedersen JI
    J Clin Invest; 1985 Feb; 75(2):427-35. PubMed ID: 3973012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate.
    Schleissner C; Olivera ER; Fernández-Valverde M; Luengo JM
    J Bacteriol; 1994 Dec; 176(24):7667-76. PubMed ID: 8002592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydroxylation of cholic acid at C12 and epimerization at C5 and C7 by Bacteroides species.
    Edenharder R
    J Steroid Biochem; 1984 Oct; 21(4):413-20. PubMed ID: 6492798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.