These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6476826)

  • 21. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man.
    Swell L; Gustafsson J; Schwartz CC; Halloran LG; Danielsson H; Vlahcevic ZR
    J Lipid Res; 1980 May; 21(4):455-66. PubMed ID: 7381336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor.
    Cho YJ; Hwang HJ; Kim SW; Song CH; Yun JW
    J Biotechnol; 2002 Apr; 95(1):13-23. PubMed ID: 11879708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excretion of cholate glucuronide.
    Little JM; Chari MV; Lester R
    J Lipid Res; 1985 May; 26(5):583-92. PubMed ID: 4020296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and properties of a novel sulfatase from Pseudomonas testosteroni that hydrolyzed 3 beta-hydroxy-5-cholenoic acid 3-sulfate.
    Tazuke Y; Matsuda K; Adachi K; Tsukada Y
    Biosci Biotechnol Biochem; 1998 Sep; 62(9):1739-44. PubMed ID: 9805374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates.
    Chayabutra C; Wu J; Ju LK
    Biotechnol Bioeng; 2001 Jan; 72(1):25-33. PubMed ID: 11084590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved production of Pseudomonas sp. ECU1011 acetyl esterase by medium design and fed-batch fermentation.
    Ju X; Yu HL; Pan J; Xu JH
    Bioprocess Biosyst Eng; 2012 Mar; 35(3):323-31. PubMed ID: 21792565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation, identification, and characterization of a lipoate-degrading pseudomonad and of a lipoate catabolite.
    Shih JC; Wright LD; McCormick DB
    J Bacteriol; 1972 Dec; 112(3):1043-51. PubMed ID: 4565525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene.
    Duetz WA; de Jong C; Williams PA; van Andel JG
    Appl Environ Microbiol; 1994 Aug; 60(8):2858-63. PubMed ID: 8085826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of urso- and ursodeoxy-cholic acids from primary bile acids by Clostridium absonum.
    Macdonald IA; Hutchison DM; Forrest TP
    J Lipid Res; 1981 Mar; 22(3):458-66. PubMed ID: 6940948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Staphylococcal enterotoxin B and nuclease production under controlled dissolved oxygen conditions.
    Carpenter DF; Silverman GJ
    Appl Microbiol; 1974 Oct; 28(4):628-37. PubMed ID: 4213939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of bile acids in man. An in vivo evaluation of the conversion of R and S 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic and 3 alpha, 7 alpha, 12 alpha-24 xi-tetrahydroxy-5 beta-cholestanoic acids to cholic acid.
    Swell L; Gustafsson J; Danielsson H; Schwartz CC; Vlahcevic ZR
    J Biol Chem; 1981 Jan; 256(2):912-6. PubMed ID: 7005227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89.
    Phale PS; Mahajan MC; Vaidyanathan CS
    Arch Microbiol; 1995 Jan; 163(1):42-7. PubMed ID: 7710320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 7 alpha-Dehydroxylation of bile acids by resting cells of an unidentified, gram-positive, nonsporeforming anaerobic bacterium.
    Masuda N; Oda H
    Appl Environ Microbiol; 1983 Feb; 45(2):456-62. PubMed ID: 6572491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Pseudomonas species isolated from clinical specimens.
    Gilardi GL
    Appl Microbiol; 1971 Mar; 21(3):414-9. PubMed ID: 4928600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of bacterial cells from methane.
    Sheehan BT; Johnson MJ
    Appl Microbiol; 1971 Mar; 21(3):511-5. PubMed ID: 4928605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The growth and sporulation of Bacillus subtilis under different aeration conditions].
    Smirnov VV; Osadchaia AI; Kudriavtsev VA; Safronova LA
    Mikrobiol Zh (1978); 1993; 55(3):38-44. PubMed ID: 8355628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bile acid synthesis in cultured human hepatoblastoma cells.
    Axelson M; Mörk B; Everson GT
    J Biol Chem; 1991 Sep; 266(27):17770-7. PubMed ID: 1655725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida.
    Hartline RA; Gunsalus IC
    J Bacteriol; 1971 May; 106(2):468-78. PubMed ID: 5573731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species.
    Blehert DS; Knoke KL; Fox BG; Chambliss GH
    J Bacteriol; 1997 Nov; 179(22):6912-20. PubMed ID: 9371434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens.
    Alonso S; Rendueles M; Díaz M
    Bioresour Technol; 2012 Apr; 109():140-7. PubMed ID: 22310213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.