These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 6477518)
1. Influence of oleate oxidation on pyruvate production and utilization in hepatocytes isolated from fed rats. Effect of 2-[5-(4-chlorophenyl)pentyl]oxiran-2-carboxylate. Demaugre F; Buc HA; Cepanec C; Moncion A; Leroux JP Biochem J; 1984 Sep; 222(2):343-50. PubMed ID: 6477518 [TBL] [Abstract][Full Text] [Related]
2. Effects of sodium 2-[5-(4-chlorophenyl)pentyl]-oxirane-2-carboxylate (POCA) on carbohydrate and fatty acid metabolism in liver and muscle. Schudt C; Simon A Biochem Pharmacol; 1984 Nov; 33(21):3357-62. PubMed ID: 6437406 [TBL] [Abstract][Full Text] [Related]
3. Importance of the modulation of glycolysis in the control of lactate metabolism by fatty acids in isolated hepatocytes from fed rats. Morand C; Besson C; Demigne C; Remesy C Arch Biochem Biophys; 1994 Mar; 309(2):254-60. PubMed ID: 8135535 [TBL] [Abstract][Full Text] [Related]
4. Effects of sodium 2-[5-(4-chlorophenyl)pentyl]-oxirane-2-carboxylate (POCA) on intermediary metabolism in isolated rat-liver cells. Vaartjes WJ; De Haas CG; Haagsman HP Biochem Pharmacol; 1986 Dec; 35(23):4267-72. PubMed ID: 3790153 [TBL] [Abstract][Full Text] [Related]
5. Effects of 2[5(4-chlorphenyl)pentyl]oxirane-2-carboxylate on fatty acid synthesis and fatty acid oxidation in isolated rat hepatocytes. Agius L; Pillay D; Alberti KG; Sherratt HS Biochem Pharmacol; 1985 Aug; 34(15):2651-4. PubMed ID: 2861821 [TBL] [Abstract][Full Text] [Related]
6. Fatty acids are potent modulators of lactate utilization in isolated hepatocytes from fed rats. Morand C; Remesy C; Demigne C Am J Physiol; 1993 May; 264(5 Pt 1):E816-23. PubMed ID: 8498503 [TBL] [Abstract][Full Text] [Related]
7. The effects of 2[5(4-chlorophenyl)pentyl]oxirane-2-carbonyl-Co-A on mitochondrial oxidations. Turnbull DM; Bartlett K; Younan SI; Sherratt HS Biochem Pharmacol; 1984 Feb; 33(3):475-81. PubMed ID: 6704164 [TBL] [Abstract][Full Text] [Related]
8. Stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes by the catecholamines, vasopressin and angiotensin. A possible mechanism of action. Sugden MC; Watts DI Biochem J; 1983 Apr; 212(1):85-91. PubMed ID: 6409102 [TBL] [Abstract][Full Text] [Related]
9. Metabolic consequences of pyruvate kinase inhibition by oxalate in intact rat hepatocytes. Buc HA; Demaugre F; Moncion A; Leroux JP Biochimie; 1981 Jul; 63(7):595-602. PubMed ID: 7284471 [TBL] [Abstract][Full Text] [Related]
10. Regulation of flux through pyruvate dehydrogenase and pyruvate carboxylase in rat hepatocytes. Effects of fatty acids and glucagon. Agius L; Alberti KG Eur J Biochem; 1985 Nov; 152(3):699-707. PubMed ID: 3932072 [TBL] [Abstract][Full Text] [Related]
11. On the mechanism of sodium 2-5-4 chlorophenylpentyloxirane-2-carboxylate (POCA) inhibition of hepatic gluconeogenesis. González-Manchón C; Ayuso MS; Parrilla R Biochem Pharmacol; 1990 Oct; 40(8):1695-9. PubMed ID: 2242006 [TBL] [Abstract][Full Text] [Related]
12. Decrease of fatty acid oxidation, ketogenesis and gluconeogenesis in isolated perfused rat liver by phenylalkyl oxirane carboxylate (B 807-27) due to inhibition of CPT I (EC 2.3.1.21). Wolf HP; Engel DW Eur J Biochem; 1985 Jan; 146(2):359-63. PubMed ID: 4038486 [TBL] [Abstract][Full Text] [Related]
13. The effect of adenosine and chloroadenosine on sex differences in the energy metabolism of rat hepatocytes. Buc HA; Demaugre F; Cépanec C; Moncion A; Leroux JP Biochim Biophys Acta; 1986 Jul; 887(2):222-8. PubMed ID: 3719010 [TBL] [Abstract][Full Text] [Related]
14. Influence of the carnitine palmitoyltransferase inhibitor POCA on myocardial performance and metabolism of insulin resistant rats. Rösen P; Reinauer H Acta Physiol Hung; 1988; 71(2):271-80. PubMed ID: 3389170 [TBL] [Abstract][Full Text] [Related]
15. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents. Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547 [TBL] [Abstract][Full Text] [Related]
16. Mechanism for the oleate stimulation of gluconeogenesis from dihydroxyacetone by hepatocytes from fasted rats. Ochs RS; Harris RA Biochim Biophys Acta; 1986 Apr; 886(1):40-7. PubMed ID: 3955080 [TBL] [Abstract][Full Text] [Related]
17. Vasopressin stimulates pyruvate utilization through a Ca(2+)-dependent mechanism and lactate formation by a protein kinase C-dependent mechanism in isolated rat hepatocytes. Conricode KM; Ochs RS Biochim Biophys Acta; 1991 Oct; 1095(2):161-8. PubMed ID: 1932135 [TBL] [Abstract][Full Text] [Related]
18. Role of the mitochondrial metabolism of pyruvate on the regulation of ketogenesis in rat hepatocytes. Demaugre F; Buc H; Girard J; Leroux JP Metabolism; 1983 Jan; 32(1):40-8. PubMed ID: 6848896 [TBL] [Abstract][Full Text] [Related]
19. Interactions between alpha-ketoisovalerate metabolism and the pathways of gluconeogenesis and urea synthesis in isolated hepatocytes. Martin-Requero A; Corkey BE; Cerdan S; Walajtys-Rode E; Parrilla RL; Williamson JR J Biol Chem; 1983 Mar; 258(6):3673-81. PubMed ID: 6833225 [TBL] [Abstract][Full Text] [Related]
20. The metabolic route by which oleate is converted into cholesterol in rat hepatocytes. Gibbons GF; Attwell Thomas CP; Pullinger CR Biochem J; 1986 Apr; 235(1):19-24. PubMed ID: 3741380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]