BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6477534)

  • 1. Intracellular levels and metabolism of leucine and alpha-ketoisocaproate in normal and maple syrup urine disease fibroblasts.
    Wendel U; Langenbeck U
    Biochem Med; 1984 Jun; 31(3):294-302. PubMed ID: 6477534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional differences in the catabolism of branched-chain L-amino acids in cultured normal and maple syrup urine disease fibroblasts.
    Schadewaldt P; Wendel U
    Biochem Med Metab Biol; 1989 Apr; 41(2):105-16. PubMed ID: 2719855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transamination and oxidative decarboxylation rates of branched-chain 2-oxo acids in cultured human skin fibroblasts.
    Schadewaldt P; Radeck W; Hammen HW; Wendel U
    Pediatr Res; 1988 Jan; 23(1):40-4. PubMed ID: 3340442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maple syrup urine disease: alpha-ketoisocaproate decarboxylation activity in different types of cultured amniotic fluid cells.
    Wendel U; Gamm G; Claussen U
    Prenat Diagn; 1981 Oct; 1(4):235-40. PubMed ID: 7346826
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of the catabolism of branched-chain L-amino acids in cultured human skin fibroblasts.
    Schadewaldt P; Wendel U
    Pediatr Res; 1987 Nov; 22(5):591-4. PubMed ID: 3684388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maple syrup urine disease: analysis of branched chain ketoacid decarboxylation in cultured fibroblasts.
    Wendel U; Wentrup H; Rüdiger HW
    Pediatr Res; 1975 Sep; 9(9):709-17. PubMed ID: 1202420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary human fibroblasts from a maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids.
    Jouvet P; Kozma M; Mehmet H
    Ann N Y Acad Sci; 2000; 926():116-21. PubMed ID: 11193026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: implications for neurological impairment associated with maple syrup urine disease.
    Jouvet P; Rustin P; Taylor DL; Pocock JM; Felderhoff-Mueser U; Mazarakis ND; Sarraf C; Joashi U; Kozma M; Greenwood K; Edwards AD; Mehmet H
    Mol Biol Cell; 2000 May; 11(5):1919-32. PubMed ID: 10793161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids.
    Amaral AU; Wajner M
    Neurochem Int; 2022 Jul; 157():105360. PubMed ID: 35577033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid method for assay of branched-chain keto acid decarboxylation in cultured cells and its application to prenatal diagnosis of maple syrup urine disease.
    Fensom AH; Benson PF; Baker JE
    Clin Chim Acta; 1978 Jul; 87(1):169-74. PubMed ID: 668138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maple syrup urine disease: branched-chain amino acid concentrations and metabolism in cultured human lymphoblasts.
    Skaper SD; Molden DP; Seegmiller JE
    Biochem Genet; 1976 Aug; 14(7-8):527-39. PubMed ID: 985377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maple syrup urine disease: branched-chain keto acid decarboxylation in fibroblasts as measured with amino acids and keto acids.
    Dancis J; Hutzler J; Cox RP
    Am J Hum Genet; 1977 May; 29(3):272-9. PubMed ID: 868873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange transfusion in acute episodes of maple syrup urine disease. Studies on branched-chain amino and keto acids.
    Wendel U; Langenbeck U; Lombeck I; Bremer HJ
    Eur J Pediatr; 1982 Jul; 138(4):293-6. PubMed ID: 7128634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of branched-chain amino acids in fibroblasts from patients with maple syrup urine disease and other abnormalities of branched-chain ketoacid dehydrogenase activity.
    Yoshida I; Sweetman L; Nyhan WL
    Pediatr Res; 1986 Feb; 20(2):169-74. PubMed ID: 3080729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevention of DNA damage by L-carnitine induced by metabolites accumulated in maple syrup urine disease in human peripheral leukocytes in vitro.
    Mescka CP; Wayhs CA; Guerreiro G; Manfredini V; Dutra-Filho CS; Vargas CR
    Gene; 2014 Sep; 548(2):294-8. PubMed ID: 25046137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of L-alloisoleucine formation: studies on a healthy subject and in fibroblasts from normals and patients with maple syrup urine disease.
    Schadewaldt P; Hammen HW; Dalle-Feste C; Wendel U
    J Inherit Metab Dis; 1990; 13(2):137-50. PubMed ID: 2116545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of branched-chain amino acids in maple syrup urine disease.
    Schadewaldt P; Wendel U
    Eur J Pediatr; 1997 Aug; 156 Suppl 1():S62-6. PubMed ID: 9266218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myelin proteins: degradation in rat brain initiated by metabolites causative of maple syrup urine disease.
    Tribble D; Shapira R
    Biochem Biophys Res Commun; 1983 Jul; 114(2):440-6. PubMed ID: 6411085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity in maple syrup urine disease: aspects of cofactor requirement and complementation in cultured fibroblasts.
    Singh S; Willers I; Goedde HW
    Clin Genet; 1977 Apr; 11(4):277-84. PubMed ID: 192504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of maple syrup urine disease in cell culture: use of substrates.
    Schadewaldt P; Beck K; Wendel U
    Clin Chim Acta; 1989 Sep; 184(1):47-56. PubMed ID: 2598467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.