BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 6477605)

  • 1. Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide).
    Chen YH; Hu CT; Yang JT
    Biochem Int; 1984 Feb; 8(2):329-38. PubMed ID: 6477605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of snake venom cardiotoxin (a membrane-disruptive polypeptide) with human erythrocytes.
    Chen YH; Liou RF; Hu CT; Juan CC; Yang JT
    Mol Cell Biochem; 1987 Jan; 73(1):69-76. PubMed ID: 3807900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Changes in the membrane surface charge and the potentiation of phospholipase A2 as affected by the cytotoxin from the venom of the Central Asian cobra].
    Krasil'nikov OV; Iukel'son LIa; Tashmukhamedov BA
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1985; (3):24-7. PubMed ID: 3986249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing the hemolysis of human erythrocytes by cardiotoxins from Naja naja kaouthia and Naja naja atra venoms and a phospholipase A2 with cardiotoxin-like activities from Bungarus fasciatus venom.
    Jiang MS; Fletcher JE; Smith LA
    Toxicon; 1989; 27(2):247-57. PubMed ID: 2718193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolytic activity of thionin from Pyrularia pubera nuts and snake venom toxins of Naja naja species: Pyrularia thionin and snake venom cardiotoxin compete for the same membrane site.
    Osorio e Castro VR; Vernon LP
    Toxicon; 1989; 27(5):511-7. PubMed ID: 2749751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action of cobra venom phospholipase A2 toward lipids of erythrocyte membranes.
    Adamich M; Dennis EA
    Prog Clin Biol Res; 1979; 30():515-21. PubMed ID: 531042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of rabbit erythrocytes treated with phospholipase A2 from bee venom.
    Vaysse J; Pilardeau P; Garnier M
    Comp Biochem Physiol A Comp Physiol; 1986; 83(4):715-9. PubMed ID: 2870863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions in red blood cells between fatty acids and either snake venom cardiotoxin or halothane.
    Fletcher JE; Jiang MS; Tripolitis L; Smith LA; Beech J
    Toxicon; 1990; 28(6):657-67. PubMed ID: 2402762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the anticoagulants from Taiwan cobra (Naja naja atra) snake venom.
    Teng CM; Kuo YP; Lee LG; Ouyang CH
    Toxicon; 1987; 25(2):201-10. PubMed ID: 3576637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synergism of cardiotoxin and phospholipase A2 in hemolysis.
    Louw AI; Visser L
    Biochim Biophys Acta; 1978 Sep; 512(1):163-71. PubMed ID: 698212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo interactions between neurotoxin, cardiotoxin and phospholipases A2 isolated from Malayan cobra (Naja naja sputatrix) venom.
    Tan NH; Armugam A
    Toxicon; 1990; 28(10):1193-8. PubMed ID: 2264068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of rhodopsin by the combined action of cardiotoxin and phospholipase A2 on rod outer segment membranes.
    Rivas EA; Le Maire M; Gulik-Krzywicki T
    Biochim Biophys Acta; 1981 Jun; 644(1):127-33. PubMed ID: 7260064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of the glutathione-glutathione reductase (GSH-GR) system in haemolysis by an elapid snake venom peptide, DLF, and phenylhydrazine [proceedings].
    Lege L
    West Afr J Pharmacol Drug Res; 1977 Jun; 4(1):66P-67P. PubMed ID: 602192
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of a cardiotoxin from Naja naja kaouthia venom on skeletal muscle: involvement of calcium-induced calcium release, sodium ion currents and phospholipases A2 and C.
    Fletcher JE; Jiang MS; Gong QH; Yudkowsky ML; Wieland SJ
    Toxicon; 1991; 29(12):1489-500. PubMed ID: 1666202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phospholipase A on actions of cobra venom cardiotoxins on erythrocytes and skeletal muscle.
    Harvey AL; Hider RC; Khader F
    Biochim Biophys Acta; 1983 Feb; 728(2):215-21. PubMed ID: 6830777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of divalent cations on snake venom cardiotoxin-induced hemolysis and 3H-deoxyglucose-6-phosphate release from human red blood cells.
    Jiang MS; Fletcher JE; Smith LA
    Toxicon; 1989; 27(12):1297-305. PubMed ID: 2629171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of snake toxins as probes for distinguishing Na+-K+-ATPase and Mg++-ATPase and their interaction with detergents.
    Chen CC; Lin-Shiau SY
    Taiwan Yi Xue Hui Za Zhi; 1979 Jul; 78(7):609-20. PubMed ID: 227985
    [No Abstract]   [Full Text] [Related]  

  • 18. On the interaction of cobra venom protein cardiotoxins with erythrocytes.
    Zusman N; Miklas TM; Graves T; Dambach GE; Hudson RA
    Biochem Biophys Res Commun; 1984 Oct; 124(2):629-36. PubMed ID: 6333874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of protein kinase C by snake venom toxins: comparison of enzyme inhibition, lethality and hemolysis among different cardiotoxin isoforms.
    Chiou SH; Chuang MH; Hung CC; Huang HC; Chen ST; Wang KT; Ho CL
    Biochem Mol Biol Int; 1995 Apr; 35(5):1103-12. PubMed ID: 7549929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo synergy of cardiotoxin and phospholipase A2 from the elapid snake Naja mossambica mossambica.
    Bougis PE; Marchot P; Rochat H
    Toxicon; 1987; 25(4):427-31. PubMed ID: 3617080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.