These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 6477968)

  • 1. Transport of 2-oxoisocaproate in isolated hepatocytes and liver mitochondria.
    Nałecz KA; Wojtczak AB; Wojtczak L
    Biochim Biophys Acta; 1984 Sep; 805(1):1-11. PubMed ID: 6477968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes.
    Edlund GL; Halestrap AP
    Biochem J; 1988 Jan; 249(1):117-26. PubMed ID: 3342001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors.
    Halestrap AP
    Biochem J; 1975 Apr; 148(1):85-96. PubMed ID: 1156402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of 2-oxoisocaproate and 2-oxoisovalerate by the perfused rat heart. Interactions with fatty acid oxidation.
    Letto J; Brosnan JT; Brosnan ME
    Biochem Cell Biol; 1990 Jan; 68(1):260-5. PubMed ID: 2112400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of hepatic glutamate metabolism. Role of 2-oxoacids in glutamate release from isolated perfused rat liver.
    Häussinger D; Gerok W
    Eur J Biochem; 1984 Sep; 143(3):491-7. PubMed ID: 6479162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intravenous infusion of alpha-oxoisocaproate: influence on amino acid and nitrogen metabolism in patients with liver cirrhosis.
    Eriksson LS; Hagenfeldt L; Wahren J
    Clin Sci (Lond); 1982 Mar; 62(3):285-93. PubMed ID: 7060335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinetics of transport of lactate and pyruvate into isolated cardiac myocytes from guinea pig. Kinetic evidence for the presence of a carrier distinct from that in erythrocytes and hepatocytes.
    Poole RC; Halestrap AP; Price SJ; Levi AJ
    Biochem J; 1989 Dec; 264(2):409-18. PubMed ID: 2604725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between oxidative decarboxylation of branched chain alpha-keto acids and oxidative phosphorylation in rat liver mitochondria.
    Schweiger H; Brand K
    Biochem Biophys Res Commun; 1982 May; 106(1):217-22. PubMed ID: 7103981
    [No Abstract]   [Full Text] [Related]  

  • 9. Branched chain alpha-keto acid oxidative decarboxylation in skeletal muscle mitochondria. Effect of isolation procedure and mitochondrial delta pH.
    Hutson SM
    J Biol Chem; 1986 Apr; 261(10):4420-5. PubMed ID: 3957903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH regulation of mitochondrial branch chain alpha-keto acid transport and oxidation in rat heart mitochondria.
    Hutson SM
    J Biol Chem; 1987 Jul; 262(20):9629-35. PubMed ID: 3597428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of alpha-keto acid transport across blood-brain barrier in rats.
    Conn AR; Fell DI; Steele RD
    Am J Physiol; 1983 Sep; 245(3):E253-60. PubMed ID: 6614164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and functional characterisation of the pyruvate (monocarboxylate) carrier from baker's yeast mitochondria (Saccharomyces cerevisiae).
    Nałecz MJ; Nałecz KA; Azzi A
    Biochim Biophys Acta; 1991 Aug; 1079(1):87-95. PubMed ID: 1888767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyruvate and ketone-body transport across the mitochondrial membrane. Exchange properties, pH-dependence and mechanism of the carrier.
    Halestrap AP
    Biochem J; 1978 Jun; 172(3):377-87. PubMed ID: 28726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The concentration of the mitochondrial pyruvate carrier in rat liver and heart mitochondria determined with alpha-cyano-beta-(1-phenylindol-3-yl)acrylate.
    Shearman MS; Halestrap AP
    Biochem J; 1984 Nov; 223(3):673-6. PubMed ID: 6508736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rôle of mitochondrial pyruvate transport in the stimulation by glucagon and phenylephrine of gluconeogenesis from L-lactate in isolated rat hepatocytes.
    Thomas AP; Halestrap AP
    Biochem J; 1981 Sep; 198(3):551-60. PubMed ID: 7326022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4-Methyl-2-oxopentanoate oxidation by rat skeletal-muscle mitochondria.
    Van Hinsbergh VW; Veerkamp JH; Glatz JF
    Biochem J; 1979 Aug; 182(2):353-60. PubMed ID: 508289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei is mediated by a facilitated diffusion carrier.
    Wiemer EA; Ter Kuile BH; Michels PA; Opperdoes FR
    Biochem Biophys Res Commun; 1992 Apr; 184(2):1028-34. PubMed ID: 1575722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of pyruvate by isolated rat liver mitochondria.
    Vaartjes WJ; Geelen MJ; van den Bergh SG
    Biochim Biophys Acta; 1979 Oct; 548(1):38-47. PubMed ID: 39599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of pyruvate concentration, dichloroacetate and alpha-cyano-4-hydroxycinnamate on gluconeogenesis, ketogenesis and [3-hydroxybutyrate]/[3-oxobutyrate] ratios in isolated rat hepatocytes.
    Demaugre F; Leroux JP; Cartier P
    Biochem J; 1978 Apr; 172(1):91-6. PubMed ID: 656077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate.
    Halestrap AP; Denton RM
    Biochem J; 1974 Feb; 138(2):313-6. PubMed ID: 4822737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.