These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6478032)

  • 1. Random matrix theory in biological nuclear magnetic resonance spectroscopy.
    Lacelle S
    Biophys J; 1984 Aug; 46(2):181-6. PubMed ID: 6478032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling in biological nuclear magnetic resonance spectral distributions.
    Lacelle S
    Biophys J; 1986 Jul; 50(1):21-6. PubMed ID: 3730504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional NMR spectroscopy: an application to the study of flexibility of protein molecules.
    Nagayama K
    Adv Biophys; 1981; 14():139-204. PubMed ID: 7015809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy.
    Clore GM; Robien MA; Gronenborn AM
    J Mol Biol; 1993 May; 231(1):82-102. PubMed ID: 8496968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical shifts in amino acids, peptides, and proteins: from quantum chemistry to drug design.
    Oldfield E
    Annu Rev Phys Chem; 2002; 53():349-78. PubMed ID: 11972012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of metabolites in intact Streptomyces citricolor culture supernatants using high-resolution nuclear magnetic resonance and directly coupled high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy.
    Abel CB; Lindon JC; Noble D; Rudd BA; Sidebottom PJ; Nicholson JK
    Anal Biochem; 1999 Jun; 270(2):220-30. PubMed ID: 10334839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation.
    Brünger AT; Clore GM; Gronenborn AM; Saffrich R; Nilges M
    Science; 1993 Jul; 261(5119):328-31. PubMed ID: 8332897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of natural-abundance nitrogen-15 nuclear magnetic resonance to large biochemically important molecules.
    Gust D; Moon RB; Roberts JD
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4696-700. PubMed ID: 1107997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles of nuclear magnetic resonance.
    Koutcher JA; Burt CT
    J Nucl Med; 1984 Jan; 25(1):101-11. PubMed ID: 6726415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic spectra of self complementary decanucleotides in solution; base sequence effect on the chemical shifts of nonexchangeable protons.
    Shindo H; Okhubo S; Matsumoto U; Giessner-Prettre C; Zon G
    J Biomol Struct Dyn; 1988 Feb; 5(4):913-31. PubMed ID: 2856030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins.
    Frank A; Onila I; Möller HM; Exner TE
    Proteins; 2011 Jul; 79(7):2189-202. PubMed ID: 21557322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable-target-function and build-up procedures for the calculation of protein conformation. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data.
    Vásquez M; Scheraga HA
    J Biomol Struct Dyn; 1988 Feb; 5(4):757-84. PubMed ID: 2482759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
    Franks WT; Zhou DH; Wylie BJ; Money BG; Graesser DT; Frericks HL; Sahota G; Rienstra CM
    J Am Chem Soc; 2005 Sep; 127(35):12291-305. PubMed ID: 16131207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The two-dimensional transferred nuclear Overhauser effect: theory and practice.
    Campbell AP; Sykes BD
    Annu Rev Biophys Biomol Struct; 1993; 22():99-122. PubMed ID: 8348000
    [No Abstract]   [Full Text] [Related]  

  • 15. Solid-state NMR spectroscopy of proteins.
    Müller H; Etzkorn M; Heise H
    Top Curr Chem; 2013; 335():121-56. PubMed ID: 23504090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Progress in nuclear magnetic resonance spectroscopy for early cancer diagnosis].
    Gao XX; Xu YZ; Zhao MX; Qi J; Li HZ; Wu JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1942-50. PubMed ID: 18975839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidimensional NMR methods for protein structure determination.
    Kanelis V; Forman-Kay JD; Kay LE
    IUBMB Life; 2001 Dec; 52(6):291-302. PubMed ID: 11895078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and energy landscape of a photoswitchable peptide: a replica exchange molecular dynamics study.
    Nguyen PH; Mu Y; Stock G
    Proteins; 2005 Aug; 60(3):485-94. PubMed ID: 15977160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional spin echo correlated spectroscopy (SECSY) for 1H NMR studies of biological macromolecules.
    Nagayama K; Wüthrich K; Ernst RR
    Biochem Biophys Res Commun; 1979 Sep; 90(1):305-11. PubMed ID: 496980
    [No Abstract]   [Full Text] [Related]  

  • 20. The analysis of NMR relaxation data in terms of multiple internal motions.
    Jardetzky O; Ribeiro AA; King R
    Biochem Biophys Res Commun; 1980 Feb; 92(3):883-8. PubMed ID: 7362612
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.