These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6479293)

  • 1. Ultrastructural analysis of the growth cycle of Chlamydia trachomatis in mouse cells treated with recombinant human alpha-interferons.
    de la Maza LM; Goebel JM; Czarniecki CW; Peterson EM
    Exp Mol Pathol; 1984 Oct; 41(2):227-35. PubMed ID: 6479293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interferon-induced inhibition of Chlamydia trachomatis: dissociation from antiviral and antiproliferative effects.
    de la Maza LM; Peterson EM; Goebel JM; Fennie CW; Czarniecki CW
    Infect Immun; 1985 Mar; 47(3):719-22. PubMed ID: 3972450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural analysis of the anti-chlamydial activity of recombinant murine interferon-gamma.
    de la Maza LM; Plunkett MJ; Carlson EJ; Peterson EM; Czarniecki CW
    Exp Mol Pathol; 1987 Aug; 47(1):13-25. PubMed ID: 3111877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads.
    Wyrick PB; Gerbig DG; Knight ST; Raulston JE
    Microb Pathog; 1996 Jan; 20(1):31-40. PubMed ID: 8692008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes.
    Koehler L; Nettelnbreker E; Hudson AP; Ott N; Gérard HC; Branigan PJ; Schumacher HR; Drommer W; Zeidler H
    Microb Pathog; 1997 Mar; 22(3):133-42. PubMed ID: 9075216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Growth of
    Nogueira AT; Braun KM; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():438. PubMed ID: 29067282
    [No Abstract]   [Full Text] [Related]  

  • 7. The developmental cycle of Chlamydia trachomatis in McCoy cells treated with cytochalasin B.
    Stirling P; Richmond S
    J Gen Microbiol; 1977 May; 100(1):31-42. PubMed ID: 195005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on the inhibitory effects of minocycline on genital Chlamydia trachomatis in McCoy cell culture].
    Hosomura Y
    Kansenshogaku Zasshi; 1990 Mar; 64(3):310-20. PubMed ID: 2358712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Ureaplasma parvum co-incubation on Chlamydia trachomatis maturation in human epithelial HeLa cells treated with interferon-γ.
    Yamazaki T; Matsuo J; Nakamura S; Oguri S; Yamaguchi H
    J Infect Chemother; 2014 Aug; 20(8):460-4. PubMed ID: 24855914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cortisol on the growth of Chlamydia trachomatis in McCoy cells.
    Bushell AC; Hobson D
    Infect Immun; 1978 Sep; 21(3):946-53. PubMed ID: 711342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Chlamydia trachomatis with human genital epithelium in culture.
    Moorman DR; Sixbey JW; Wyrick PB
    J Gen Microbiol; 1986 Apr; 132(4):1055-67. PubMed ID: 3760816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural observations on the entry of Chlamydia trachomatis into human spermatozoa.
    Erbengi T
    Hum Reprod; 1993 Mar; 8(3):416-21. PubMed ID: 8473459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells.
    Roshick C; Wood H; Caldwell HD; McClarty G
    Infect Immun; 2006 Jan; 74(1):225-38. PubMed ID: 16368976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferon-ε as potential inhibitor of Chlamydia trachomatis infection.
    Filardo S; Di Pietro M; Bozzuto G; Fracella M; Bitossi C; Molinari A; Scagnolari C; Antonelli G; Sessa R
    Microb Pathog; 2023 Dec; 185():106427. PubMed ID: 37890679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of chlamydia trachomatis growth by human interferon-alpha: mechanisms and synergistic effect with interferon-gamma and tumor necrosis factor-alpha.
    Ishihara T; Aga M; Hino K; Ushio C; Taniguchi M; Iwaki K; Ikeda M; Kurimoto M
    Biomed Res; 2005 Aug; 26(4):179-85. PubMed ID: 16152734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivation of persistent Chlamydia trachomatis infection in cell culture.
    Beatty WL; Morrison RP; Byrne GI
    Infect Immun; 1995 Jan; 63(1):199-205. PubMed ID: 7806358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of growth of Chlamydia trachomatis by human gamma interferon.
    Shemer Y; Sarov I
    Infect Immun; 1985 May; 48(2):592-6. PubMed ID: 2985506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gamma interferon-induced nitric oxide production reduces Chlamydia trachomatis infectivity in McCoy cells.
    Mayer J; Woods ML; Vavrin Z; Hibbs JB
    Infect Immun; 1993 Feb; 61(2):491-7. PubMed ID: 8423078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition.
    Perry LL; Su H; Feilzer K; Messer R; Hughes S; Whitmire W; Caldwell HD
    J Immunol; 1999 Mar; 162(6):3541-8. PubMed ID: 10092812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of chlamydial group Antigen in McCoy cell monolayers infected with Chlamydia trachomatis or Chlamydia psittaci.
    Richmond SJ; Stirling P
    Infect Immun; 1981 Nov; 34(2):561-70. PubMed ID: 7309240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.