These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 6479512)
1. Kinetics and metabolism of inhaled methyl chloroform (1,1,1-trichloroethane) in male volunteers. Nolan RJ; Freshour NL; Rick DL; McCarty LP; Saunders JH Fundam Appl Toxicol; 1984 Aug; 4(4):654-62. PubMed ID: 6479512 [TBL] [Abstract][Full Text] [Related]
2. Effect of various exposure scenarios on the biological monitoring of organic solvents in alveolar air. II. 1,1,1-Trichloroethane and trichloroethylene. Laparé S; Tardif R; Brodeur J Int Arch Occup Environ Health; 1995; 67(6):375-94. PubMed ID: 8567088 [TBL] [Abstract][Full Text] [Related]
3. 1,1,1-Trichloroethane exposure, biologic monitoring by breath and urine analyses. Caperos JR; Droz PO; Hake CL; Humbert BE; Jacot-Guillarmod A Int Arch Occup Environ Health; 1982 Feb; 49(3-4):293-303. PubMed ID: 7068241 [TBL] [Abstract][Full Text] [Related]
4. [Diminution of 1, 1, 1- and 1, 1, 2- trichloroethane in the blood and their excretion by the lungs (author's transl)]. Hobara T; Kobayashi H; Iwamoto S; Sakai T Sangyo Igaku; 1981 Jul; 23(4):377-82. PubMed ID: 7321282 [TBL] [Abstract][Full Text] [Related]
5. [Experimental examinations and toxicokinetic analysis of the absorption and excretion of 1,1,1-trichloroethane by the lung]. Hobara T; Kobayashi H; Higashihara E; Iwamoto S; Kawamoto T; Sakai T; Tsubota N Sangyo Igaku; 1982 Nov; 24(6):599-607. PubMed ID: 7182601 [TBL] [Abstract][Full Text] [Related]
6. A comparison of the fate of inhaled methyl chloroform (1,1,1-trichloroethane) following single or repeated exposure in rats and mice. Schumann AM; Fox TR; Watanabe PG Fundam Appl Toxicol; 1982; 2(1):27-32. PubMed ID: 7185599 [No Abstract] [Full Text] [Related]
7. Kinetics of 1,1,1-trichloroethane in volunteers; influence of exposure concentration and work load. Monster AC; Boersma G; Steenweg H Int Arch Occup Environ Health; 1979 Jan; 42(3-4):293-301. PubMed ID: 422270 [No Abstract] [Full Text] [Related]
8. Urinary methylchloroform rather than urinary metabolites as an indicator of occupational exposure to methylchloroform. Mizunuma K; Kawai T; Horiguchi S; Ikeda M Int Arch Occup Environ Health; 1995; 67(1):19-25. PubMed ID: 7622275 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. strain TCAIIB. Gälli R; McCarty PL Appl Environ Microbiol; 1989 Apr; 55(4):845-51. PubMed ID: 2729986 [TBL] [Abstract][Full Text] [Related]
10. Demethylation pathways in caffeine metabolism as indicators of variability in 1,1,1-trichloroethane oxidation in man. Berode M; Boillat MA; Guillemin MP; Wu MM; Savolainen H Pharmacol Toxicol; 1990 Jul; 67(1):41-6. PubMed ID: 2395815 [TBL] [Abstract][Full Text] [Related]
11. The importance of measured end-points in demonstrating the occurrence of interactions: a case study with methylchloroform and m-xylene. Tardif R; Charest-Tardif G Toxicol Sci; 1999 Jun; 49(2):312-7. PubMed ID: 10416277 [TBL] [Abstract][Full Text] [Related]
12. [14C]Methyl chloroform (1,1,1-trichloroethane): pharmacokinetics in rats and mice following inhalation exposure. Schumann AM; Fox TR; Watanabe PG Toxicol Appl Pharmacol; 1982 Mar; 62(3):390-401. PubMed ID: 7071857 [No Abstract] [Full Text] [Related]
13. Consideration of the target organ toxicity of trichloroethylene in terms of metabolite toxicity and pharmacokinetics. Davidson IW; Beliles RP Drug Metab Rev; 1991; 23(5-6):493-599. PubMed ID: 1802654 [TBL] [Abstract][Full Text] [Related]
14. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Fisher JW; Mahle D; Abbas R Toxicol Appl Pharmacol; 1998 Oct; 152(2):339-59. PubMed ID: 9853003 [TBL] [Abstract][Full Text] [Related]
15. Assessing interaction thresholds for trichloroethylene in combination with tetrachloroethylene and 1,1,1-trichloroethane using gas uptake studies and PBPK modeling. Dobrev ID; Andersen ME; Yang RS Arch Toxicol; 2001 May; 75(3):134-44. PubMed ID: 11409535 [TBL] [Abstract][Full Text] [Related]
16. A physiologically based simulation approach for determining metabolic constants from gas uptake data. Gargas ML; Andersen ME; Clewell HJ Toxicol Appl Pharmacol; 1986 Dec; 86(3):341-52. PubMed ID: 3787629 [TBL] [Abstract][Full Text] [Related]
17. Physiologically based pharmacokinetic modeling of the lactating rat and nursing pup: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Fisher JW; Whittaker TA; Taylor DH; Clewell HJ; Andersen ME Toxicol Appl Pharmacol; 1990 Mar; 102(3):497-513. PubMed ID: 2315918 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of chloral hydrate and its metabolites in male human volunteers. Merdink JL; Robison LM; Stevens DK; Hu M; Parker JC; Bull RJ Toxicology; 2008 Mar; 245(1-2):130-40. PubMed ID: 18243465 [TBL] [Abstract][Full Text] [Related]
19. Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Fisher JW; Whittaker TA; Taylor DH; Clewell HJ; Andersen ME Toxicol Appl Pharmacol; 1989 Jul; 99(3):395-414. PubMed ID: 2749729 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of chloroethanes by rat liver nuclear cytochrome P-450. Casciola LA; Ivanetich KM Carcinogenesis; 1984 May; 5(5):543-8. PubMed ID: 6722974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]