These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 6480518)

  • 1. Frequency-following responses in the cat.
    Mair IW; Laukli E
    Hear Res; 1984 Jul; 15(1):1-10. PubMed ID: 6480518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency specificity of the auditory brainstem responses in the cat.
    Mair IW; Laukli E
    Acta Otolaryngol; 1985; 99(3-4):377-83. PubMed ID: 4013727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral recording of early auditory evoked responses in the cat.
    Mair IW; Elverland HH; Laukli E
    Hear Res; 1978 Oct; 1(1):11-23. PubMed ID: 757228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remotely recorded cochlear microphonic in the cat.
    Laukli E; Mair IW
    Arch Otorhinolaryngol; 1983; 238(1):17-26. PubMed ID: 6882278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear distribution of frequency-following response initiation. A high-pass masking noise study.
    Yamada O; Kodera K; Hink RF; Suzuki JI
    Audiology; 1979; 18(5):381-7. PubMed ID: 496720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location-specific components of the gross cochlear action potential: an assessment of the validity of the high-pass masking technique by cochlear nerve fibre recording in the cat.
    Evans EF; Elberling C
    Audiology; 1982; 21(3):204-27. PubMed ID: 7092725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of stimulus rise time and high-pass masking on early auditory evoked potentials].
    Bunke D; von Specht H; Mühler R; Pethe J; Kevanishvili Z
    Laryngorhinootologie; 1998 Apr; 77(4):185-90. PubMed ID: 9592750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Place-specific derived cochlear microphonics from human ears.
    Ponton CW; Don M; Eggermont JJ
    Scand Audiol; 1992; 21(3):131-41. PubMed ID: 1439498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear microphonic potential recorded by transtympanic electrocochleography in normally-hearing and hearing-impaired ears.
    Santarelli R; Scimemi P; Dal Monte E; Arslan E
    Acta Otorhinolaryngol Ital; 2006 Apr; 26(2):78-95. PubMed ID: 16886850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of single cells in the cat inferior colliculus to binaural masking level difference signals.
    Caird D; Pillmann F; Klinke R
    Hear Res; 1989 Dec; 43(1):1-23. PubMed ID: 2613563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monaural and binaural hearing directivity in the bottlenose dolphin: evoked-potential study.
    Popov VV; Supin AY; Klishin VO; Bulgakova TN
    J Acoust Soc Am; 2006 Jan; 119(1):636-44. PubMed ID: 16454317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the intensity of masking noise on ear canal recorded low-frequency cochlear microphonic waveforms in normal hearing subjects.
    Zhang M
    Hear Res; 2014 Jul; 313():9-17. PubMed ID: 24793117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of ototoxicity on the auditory brain stem response and the scalp-recorded cochlear microphonic in guinea pigs.
    Schwent VL; Williston JS; Jewett DL
    Laryngoscope; 1980 Aug; 90(8 Pt 1):1350-9. PubMed ID: 7401837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binaural acoustic reflex activity following monaural noise exposure in decerebrate chinchillas.
    Gerhardt KJ; Walton JP
    Audiology; 1986; 25(4-5):309-20. PubMed ID: 3566638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early auditory-evoked responses: spectral content.
    Laukli E; Mair IW
    Audiology; 1981; 20(6):453-64. PubMed ID: 7316882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise.
    Liberman MC
    J Neurophysiol; 1988 Nov; 60(5):1779-98. PubMed ID: 3199181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origins of the scalp recorded frequency-following response in the cat.
    Gardi J; Merzenich M; McKean C
    Audiology; 1979; 18(5):358-81. PubMed ID: 496719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse.
    Song L; McGee J; Walsh EJ
    J Neurophysiol; 2008 Jan; 99(1):344-55. PubMed ID: 17989242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far-field cochlear microphonic responses to continuous pure tones recorded from the scalps of cats.
    Schwent VL; Jewett DL
    Electroencephalogr Clin Neurophysiol; 1980 May; 48(5):527-34. PubMed ID: 6153961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product emissions in humans. I. Basic properties in normally hearing subjects.
    Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.