BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 6480518)

  • 1. Frequency-following responses in the cat.
    Mair IW; Laukli E
    Hear Res; 1984 Jul; 15(1):1-10. PubMed ID: 6480518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency specificity of the auditory brainstem responses in the cat.
    Mair IW; Laukli E
    Acta Otolaryngol; 1985; 99(3-4):377-83. PubMed ID: 4013727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral recording of early auditory evoked responses in the cat.
    Mair IW; Elverland HH; Laukli E
    Hear Res; 1978 Oct; 1(1):11-23. PubMed ID: 757228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remotely recorded cochlear microphonic in the cat.
    Laukli E; Mair IW
    Arch Otorhinolaryngol; 1983; 238(1):17-26. PubMed ID: 6882278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear distribution of frequency-following response initiation. A high-pass masking noise study.
    Yamada O; Kodera K; Hink RF; Suzuki JI
    Audiology; 1979; 18(5):381-7. PubMed ID: 496720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location-specific components of the gross cochlear action potential: an assessment of the validity of the high-pass masking technique by cochlear nerve fibre recording in the cat.
    Evans EF; Elberling C
    Audiology; 1982; 21(3):204-27. PubMed ID: 7092725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of stimulus rise time and high-pass masking on early auditory evoked potentials].
    Bunke D; von Specht H; Mühler R; Pethe J; Kevanishvili Z
    Laryngorhinootologie; 1998 Apr; 77(4):185-90. PubMed ID: 9592750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Place-specific derived cochlear microphonics from human ears.
    Ponton CW; Don M; Eggermont JJ
    Scand Audiol; 1992; 21(3):131-41. PubMed ID: 1439498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear microphonic potential recorded by transtympanic electrocochleography in normally-hearing and hearing-impaired ears.
    Santarelli R; Scimemi P; Dal Monte E; Arslan E
    Acta Otorhinolaryngol Ital; 2006 Apr; 26(2):78-95. PubMed ID: 16886850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of single cells in the cat inferior colliculus to binaural masking level difference signals.
    Caird D; Pillmann F; Klinke R
    Hear Res; 1989 Dec; 43(1):1-23. PubMed ID: 2613563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monaural and binaural hearing directivity in the bottlenose dolphin: evoked-potential study.
    Popov VV; Supin AY; Klishin VO; Bulgakova TN
    J Acoust Soc Am; 2006 Jan; 119(1):636-44. PubMed ID: 16454317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the intensity of masking noise on ear canal recorded low-frequency cochlear microphonic waveforms in normal hearing subjects.
    Zhang M
    Hear Res; 2014 Jul; 313():9-17. PubMed ID: 24793117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of ototoxicity on the auditory brain stem response and the scalp-recorded cochlear microphonic in guinea pigs.
    Schwent VL; Williston JS; Jewett DL
    Laryngoscope; 1980 Aug; 90(8 Pt 1):1350-9. PubMed ID: 7401837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binaural acoustic reflex activity following monaural noise exposure in decerebrate chinchillas.
    Gerhardt KJ; Walton JP
    Audiology; 1986; 25(4-5):309-20. PubMed ID: 3566638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early auditory-evoked responses: spectral content.
    Laukli E; Mair IW
    Audiology; 1981; 20(6):453-64. PubMed ID: 7316882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise.
    Liberman MC
    J Neurophysiol; 1988 Nov; 60(5):1779-98. PubMed ID: 3199181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origins of the scalp recorded frequency-following response in the cat.
    Gardi J; Merzenich M; McKean C
    Audiology; 1979; 18(5):358-81. PubMed ID: 496719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse.
    Song L; McGee J; Walsh EJ
    J Neurophysiol; 2008 Jan; 99(1):344-55. PubMed ID: 17989242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far-field cochlear microphonic responses to continuous pure tones recorded from the scalps of cats.
    Schwent VL; Jewett DL
    Electroencephalogr Clin Neurophysiol; 1980 May; 48(5):527-34. PubMed ID: 6153961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product emissions in humans. I. Basic properties in normally hearing subjects.
    Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.