These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 6480901)

  • 1. Cerebellar cortical efferent fibers in the North American opossum, Didelphis virginiana. II. The posterior vermis.
    Klinkhachorn PS; Haines DE; Culberson JL
    J Comp Neurol; 1984 Aug; 227(3):439-51. PubMed ID: 6480901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebellar cortical efferent fibers in the North American opossum, Didelphis virginiana. I. The anterior lobe.
    Klinkhachorn PS; Haines DE; Culberson JL
    J Comp Neurol; 1984 Aug; 227(3):424-38. PubMed ID: 6480900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of the cerebellum in the pigeon (Columba livia): I. Corticonuclear and corticovestibular connections.
    Arends JJ; Zeigler HP
    J Comp Neurol; 1991 Apr; 306(2):221-44. PubMed ID: 1711053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellar corticovestibular fibers of the posterior lobe in a prosimian primate, the lesser bushbaby (Galago senegalensis).
    Haines DE
    J Comp Neurol; 1975 Apr; 160(3):363-97. PubMed ID: 1112929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar corticonuclear fibers of the dorsal culminate lobule (anterior lobe--lobule V) in a prosimian primate, Galago senegalensis.
    Haines DE; Rubertone JA
    J Comp Neurol; 1979 Aug; 186(3):321-41. PubMed ID: 457935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections.
    Henkel CK; Martin GF
    J Comp Neurol; 1977 Mar; 172(2):321-48. PubMed ID: 65367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar corticonuclear and corticovestibular fibers of the anterior lobe vermis in a prosimian primate (Galago senegalensis).
    Haines DE
    J Comp Neurol; 1976 Nov; 170(1):67-95. PubMed ID: 824330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar corticonuclear fibers of the paramedian lobule of tree shrew (Tupaia glis) with comments on zones.
    Haines DE; Patrick GW
    J Comp Neurol; 1981 Sep; 201(1):99-119. PubMed ID: 7276253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar cortical efferents of the posterior lobe vermis in a prosimian primate (Galago) and the tree shrew (Tupaia).
    Haines DE
    J Comp Neurol; 1975 Sep; 163(1):21-39. PubMed ID: 808563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebellar cortical efferent fibers of the paraflocculus of tree shrew (Tupaia glis).
    Haines DE; Whitworth RH
    J Comp Neurol; 1978 Nov; 182(1):137-50. PubMed ID: 100531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topography of cerebellar corticonuclear fibers of the albino rat. Vermis of anterior and posterior lobes.
    Haines DE; Koletar SL
    Brain Behav Evol; 1979; 16(4):271-92. PubMed ID: 393364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of external cuneate nucleus afferents to the cerebellum: I. Notes on the projections from the main cuneate and other adjacent nuclei. An experimental study with radioactive tracers in the cat.
    Jasmin L; Courville J
    J Comp Neurol; 1987 Jul; 261(4):481-96. PubMed ID: 3611422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The organization of olivo-cerebellar projections in the opossum, Didelphis virginiana, as revealed by the retrograde transport of horseradish peroxidase.
    Linauts M; Martin GF
    J Comp Neurol; 1978 May; 179(2):355-81. PubMed ID: 641222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olivocerebellar connections in sheep studied with the retrograde transport of horseradish peroxidase.
    Saigal RP; Karamanlidis AN; Voogd J; Michaloudi H; Mangana O
    J Comp Neurol; 1983 Jul; 217(4):440-8. PubMed ID: 6886062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum.
    Groenewegen HJ; Voogd J
    J Comp Neurol; 1977 Aug; 174(3):417-88. PubMed ID: 903414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinocerebellar projections from the cervical enlargement in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Matsushita M; Ikeda M
    J Comp Neurol; 1987 Sep; 263(2):223-40. PubMed ID: 3667978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and brainstem origin of cholecystokinin-like immunoreactivity in the opossum cerebellum.
    King JS; Bishop GA
    J Comp Neurol; 1990 Aug; 298(3):373-84. PubMed ID: 2212110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographical organization of olivocerebellar and corticonuclear connections in the rat--an WGA-HRP study: I. Lobules IX, X, and the flocculus.
    Bernard JF
    J Comp Neurol; 1987 Sep; 263(2):241-58. PubMed ID: 3667979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pontocerebellar system in the rat: an HRP study. I. Posterior vermis.
    Azizi SA; Mihailoff GA; Burne RA; Woodward DJ
    J Comp Neurol; 1981 Apr; 197(4):543-8. PubMed ID: 7229127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efferent connections of the olfactory bulb in the opossum (Didelphis marsupialis aurita): a Fink-Heimer study.
    Shammah-Lagnado SJ; Negrão N
    J Comp Neurol; 1981 Sep; 201(1):51-63. PubMed ID: 7276251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.