These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 6480904)

  • 1. Developing descending neurons of the early Xenopus tail spinal cord in the caudal spinal cord of early Xenopus.
    Nordlander RH
    J Comp Neurol; 1984 Sep; 228(1):117-28. PubMed ID: 6480904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord.
    Hartenstein V
    J Comp Neurol; 1993 Feb; 328(2):213-31. PubMed ID: 8423241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.
    Harper CE; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1993 Apr; 340(1291):141-60. PubMed ID: 8099742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal growth cones in the developing amphibian spinal cord.
    Nordlander RH
    J Comp Neurol; 1987 Sep; 263(4):485-96. PubMed ID: 3667985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motoneurons of the tail of young Xenopus tadpoles.
    Nordlander RH
    J Comp Neurol; 1986 Nov; 253(3):403-13. PubMed ID: 3793997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Onset and development of intersegmental projections in the chick embryo spinal cord.
    Oppenheim RW; Shneiderman A; Shimizu I; Yaginuma H
    J Comp Neurol; 1988 Sep; 275(2):159-80. PubMed ID: 2464626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology of the caudal spinal cord in Rana (Ranidae) and Xenopus (Pipidae) tadpoles.
    Nishikawa K; Wassersug R
    J Comp Neurol; 1988 Mar; 269(2):193-202. PubMed ID: 3356808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord development in anuran larvae: I. Primary and secondary neurons.
    Forehand CJ; Farel PB
    J Comp Neurol; 1982 Aug; 209(4):386-94. PubMed ID: 6982287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal cord development in anuran larvae: II. Ascending and descending pathways.
    Forehand CJ; Farel PB
    J Comp Neurol; 1982 Aug; 209(4):395-408. PubMed ID: 6982288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of early brainstem projections to the tail spinal cord of Xenopus.
    Nordlander RH; Baden ST; Ryba TM
    J Comp Neurol; 1985 Jan; 231(4):519-29. PubMed ID: 3968253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in descending brain-spinal cord projections with age in larval lamprey: implications for spinal cord injury.
    Zhang L; Palmer R; McClellan AD
    J Comp Neurol; 2002 May; 447(2):128-37. PubMed ID: 11977116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Axonal projections of the cells of the dorsal ganglia in the lumbar segments of the spinal cord in tadpoles of the toad Xenopus laevis].
    Shupliakov OV
    Zh Evol Biokhim Fiziol; 1988; 24(5):715-20. PubMed ID: 3218403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamorphosis of spinal-projecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy.
    Swain GP; Ayers J; Selzer ME
    J Comp Neurol; 1995 Nov; 362(4):453-67. PubMed ID: 8636461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descending propriospinal neurons in normal and spinal cord-transected lamprey.
    Rouse DT; McClellan AD
    Exp Neurol; 1997 Jul; 146(1):113-24. PubMed ID: 9225744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
    Yoshida M; Roberts A; Soffe SR
    J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs.
    Beattie MS; Bresnahan JC; Lopate G
    J Neurobiol; 1990 Oct; 21(7):1108-22. PubMed ID: 2258724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of substance P-like immunoreactivity in Xenopus embryos.
    Gallagher BC; Moody SA
    J Comp Neurol; 1987 Jun; 260(2):175-85. PubMed ID: 2440913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail.
    Nordlander RH; Singer M
    J Comp Neurol; 1978 Jul; 180(2):349-74. PubMed ID: 659666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurites show pathway specificity but lack directional specificity or predetermined lengths in Xenopus embryos.
    Huang S; Jacobson M
    J Neurobiol; 1986 Nov; 17(6):593-603. PubMed ID: 3794687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.