These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6481506)

  • 21. Contrast sensitivity function and ocular higher-order wavefront aberrations in normal human eyes.
    Oshika T; Okamoto C; Samejima T; Tokunaga T; Miyata K
    Ophthalmology; 2006 Oct; 113(10):1807-12. PubMed ID: 16876865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dependence of wave front refraction on pupil size due to the presence of higher order aberrations.
    Iseli HP; Bueeler M; Hafezi F; Seiler T; Mrochen M
    Eur J Ophthalmol; 2005; 15(6):680-7. PubMed ID: 16329051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimates of the ocular wave aberration from pairs of double-pass retinal images.
    Iglesias I; Berrio E; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2466-76. PubMed ID: 9729858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring mental workload: ocular astigmatism aberration as a novel objective index.
    Jiménez R; Cárdenas D; González-Anera R; Jiménez JR; Vera J
    Ergonomics; 2018 Apr; 61(4):506-516. PubMed ID: 29054132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of amount and changes in axis of astigmatism on retinal image quality.
    Pujol J; Arjona M; Arasa J; Badia V
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2514-21. PubMed ID: 9729863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Charles F. Prentice Award Lecture 2005: optics of the human eye: progress and problems.
    Charman WN
    Optom Vis Sci; 2006 Jun; 83(6):335-45. PubMed ID: 16772891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of the eye's near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique.
    López-Gil N; Howland HC
    Vision Res; 1999 Jun; 39(12):2031-7. PubMed ID: 10343787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Off-axis aberrations of a wide-angle schematic eye model.
    Escudero-Sanz I; Navarro R
    J Opt Soc Am A Opt Image Sci Vis; 1999 Aug; 16(8):1881-91. PubMed ID: 10435267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation transfer of the human eye as a function of retinal eccentricity.
    Navarro R; Artal P; Williams DR
    J Opt Soc Am A; 1993 Feb; 10(2):201-12. PubMed ID: 8478746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis.
    Oshika T; Tokunaga T; Samejima T; Miyata K; Kawana K; Kaji Y
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1334-8. PubMed ID: 16565365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Creating correct blur and its effect on accommodation.
    Cholewiak SA; Love GD; Banks MS
    J Vis; 2018 Sep; 18(9):1. PubMed ID: 30193343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye's optical system.
    Artal P; Iglesias I; López-Gil N; Green DG
    J Opt Soc Am A Opt Image Sci Vis; 1995 Oct; 12(10):2358-66. PubMed ID: 7500217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes.
    Guirao A; Porter J; Williams DR; Cox IG
    J Opt Soc Am A Opt Image Sci Vis; 2002 Mar; 19(3):620-8. PubMed ID: 11876329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of just-noticeable differences for refractive errors and spherical aberration using visual simulation.
    Legras R; Chateau N; Charman WN
    Optom Vis Sci; 2004 Sep; 81(9):718-28. PubMed ID: 15365392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postblink changes in the ocular modulation transfer function measured by a double-pass method.
    Montés-Micó R; Alió JL; Charman WN
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4468-73. PubMed ID: 16303935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Development of a new evaluation system for visual function].
    Fujikado T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):809-34; discussion 835. PubMed ID: 15656088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of aging on the monochromatic aberrations of the human eye.
    Calver RI; Cox MJ; Elliott DB
    J Opt Soc Am A Opt Image Sci Vis; 1999 Sep; 16(9):2069-78. PubMed ID: 10474888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accommodation-related changes in monochromatic aberrations of the human eye as a function of age.
    López-Gil N; Fernández-Sánchez V; Legras R; Montés-Micó R; Lara F; Nguyen-Khoa JL
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1736-43. PubMed ID: 18385098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor.
    Pantanelli S; MacRae S; Jeong TM; Yoon G
    Ophthalmology; 2007 Nov; 114(11):2013-21. PubMed ID: 17553566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye.
    Roorda A; Campbell MC; Bobier WR
    J Opt Soc Am A Opt Image Sci Vis; 1995 Aug; 12(8):1647-56. PubMed ID: 7674062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.