BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6482387)

  • 1. Ontogeny of neuroendocrine cells in human fetal lung. I. An electron microscopic study.
    Stahlman MT; Gray ME
    Lab Invest; 1984 Oct; 51(4):449-63. PubMed ID: 6482387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroendocrine components of the bronchopulmonary tract: hyperplasias, dysplasias, and neoplasms.
    Gould VE; Linnoila RI; Memoli VA; Warren WH
    Lab Invest; 1983 Nov; 49(5):519-37. PubMed ID: 6138458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogeny of neuroendocrine cells in human fetal lung. II. An immunohistochemical study.
    Stahlman MT; Kasselberg AG; Orth DN; Gray ME
    Lab Invest; 1985 Jan; 52(1):52-60. PubMed ID: 3880841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroendocrine cells in the developing human lung: morphologic and functional considerations.
    Cutz E; Gillan JE; Bryan AC
    Pediatr Pulmonol; 1985; 1(3 Suppl):S21-9. PubMed ID: 3906540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunoreactive bombesin and calcitonin paracrine cells of human fetal and newborn airways.
    Stahlman M; Grey ME; Kasselberg AG
    Pediatr Pulmonol; 1985; 1(3 Suppl):S6-12. PubMed ID: 4069804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional implications of extensive new data on the innervation of pulmonary neuroepithelial bodies.
    Adriaensen D; Scheuermann DW; Gajda M; Brouns I; Timmermans JP
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):395-403. PubMed ID: 11729982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogeny of neuroendocrine cells in human fetal lung. III. An electron microscopic immunohistochemical study.
    Stahlman MT; Jones M; Gray ME; Kasselberg AG; Vaughn WK
    Lab Invest; 1987 Jun; 56(6):629-41. PubMed ID: 3599909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colocalization of peptide hormones in neuroendocrine cells of human fetal and newborn lungs: an electron microscopic study.
    Stahlman MT; Gray ME
    Anat Rec; 1993 May; 236(1):206-12. PubMed ID: 8507008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors.
    Adriaensen D; Brouns I; Van Genechten J; Timmermans JP
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jan; 270(1):25-40. PubMed ID: 12494487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro characteristics of pulmonary neuroendocrine cells isolated from rabbit fetal lung. I. Effects of culture media and nerve growth factor.
    Cutz E; Yeger H; Wong V; Bienkowski E; Chan W
    Lab Invest; 1985 Dec; 53(6):672-83. PubMed ID: 2866271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of neuroepithelial bodies in intact and cultured lungs of fetal rats.
    Carabba VH; Sorokin SP; Hoyt RF
    Am J Anat; 1985 May; 173(1):1-27. PubMed ID: 4003323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solitary neuroendocrine cells and neuroepithelial bodies in the lower airways of embryonic, fetal, and postnatal sheep.
    Balaguer L; Romano J
    Anat Rec; 1991 Nov; 231(3):333-8. PubMed ID: 1684889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of cholecystokinin-like peptide in neuroendocrine cells of mammalian lungs: a light and electron microscopic immunohistochemical study.
    Wang YY; Cutz E
    Anat Rec; 1993 May; 236(1):198-205. PubMed ID: 8507007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogeny of neuroepithelial bodies: correlations with mitogenesis and innervation.
    Sorokin SP; Hoyt RF; Shaffer MJ
    Microsc Res Tech; 1997 Apr; 37(1):43-61. PubMed ID: 9144621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of neuroepithelial bodies in pre- and postnatal mouse lungs: scanning electron microscopic study.
    Hung KS
    Anat Rec; 1982 Jun; 203(2):285-91. PubMed ID: 7114500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory receptors in the airways: neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation.
    Brouns I; De Proost I; Pintelon I; Timmermans JP; Adriaensen D
    Auton Neurosci; 2006 Jun; 126-127():307-19. PubMed ID: 16600695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructure and immunocytochemistry of the neuroepithelial bodies in the lung of the tiger salamander, Ambystoma tigrinum (Urodela, Amphibia).
    Goniakowska-Witalińska L; Lauweryns JM; Zaccone G; Fasulo S; Tagliafierro G
    Anat Rec; 1992 Nov; 234(3):419-31. PubMed ID: 1443667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunocytochemical localization of epidermal growth factor in the developing human respiratory system and in acute and chronic lung disease in the neonate.
    Stahlman MT; Orth DN; Gray ME
    Lab Invest; 1989 Apr; 60(4):539-47. PubMed ID: 2785233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroepithelial bodies in the lung of Melanophryniscus stelzneri stelzneri (Anura, Bufonidae).
    Hermida GN; Farías A; Fiorito LE
    Anat Embryol (Berl); 2003 Dec; 207(4-5):373-9. PubMed ID: 14639477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell biology of pulmonary neuroepithelial bodies--validation of an in vitro model. I. Effects of hypoxia and Ca2+ ionophore on serotonin content and exocytosis of dense core vesicles.
    Cutz E; Speirs V; Yeger H; Newman C; Wang D; Perrin DG
    Anat Rec; 1993 May; 236(1):41-52. PubMed ID: 8507015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.