These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 6482473)

  • 1. Enzyme reactions at the surface of living cells. II. Destabilization in the membranes and conduction of signals.
    Ricard J; Noat G
    J Theor Biol; 1984 Aug; 109(4):571-80. PubMed ID: 6482473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme reactions at the surface of living cells. I. Electric repulsion of charged ligands and recognition of signals from the external milieu.
    Ricard J; Noat G
    J Theor Biol; 1984 Aug; 109(4):555-69. PubMed ID: 6482472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics aspects of long distance functional interactions between membrane-bound enzymes.
    Ricard J; Kellershohn N; Mulliert G
    J Theor Biol; 1992 May; 156(1):1-40. PubMed ID: 1640717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of diffusional hindrances, electrostatic repulsion and product inhibition on the kinetic properties of a bound acid phosphatase.
    Thiébart-Fassy I; Hervagault JF
    FEBS Lett; 1993 Nov; 334(1):89-94. PubMed ID: 8224236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic control of immobilized enzymes. Kinetics of acid phosphatase bound to plant cell walls.
    Ricard J; Noat G; Crasnier M; Job D
    Biochem J; 1981 May; 195(2):357-67. PubMed ID: 7316956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes as biosensors. 1. Enzyme memory and sensing chemical signals.
    Ricard J; Buc J
    Eur J Biochem; 1988 Sep; 176(1):103-9. PubMed ID: 3416866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models for the specific adhesion of cells to cells.
    Bell GI
    Science; 1978 May; 200(4342):618-27. PubMed ID: 347575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unified model for signal transduction reactions in cellular membranes.
    Haugh JM
    Biophys J; 2002 Feb; 82(2):591-604. PubMed ID: 11806904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evidence for a kinetic and electrochemical memory in enzyme membranes.
    Thomas D; Barbotin JN; David A; Hervagault JF; Romette JL
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5314-7. PubMed ID: 23533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of a translocation-like model with saturable kinetics.
    Maïsterrena B; Blum LJ; Coulet PR
    Biochem J; 1987 Mar; 242(3):835-9. PubMed ID: 3593279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Mathematical Theory of Diffusion and Reaction in Enzymes Immoblized Artificial Membrane. The Theory of the Non-Steady State.
    Ramanathan M; Muthuramalingam R; Lakshmanan R
    J Membr Biol; 2015 Dec; 248(6):1127-35. PubMed ID: 26265446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic model of conduction changes across excitable membranes.
    Jain MK; Marks RH; Cordes EH
    Proc Natl Acad Sci U S A; 1970 Oct; 67(2):799-806. PubMed ID: 5289023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-bound choline acetyltransferase in Torpedo electric organ: a marker for synaptosomal plasma membranes?
    Eder-Colli L; Amato S
    Neuroscience; 1985 Jun; 15(2):577-89. PubMed ID: 4022340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics.
    Goldstein B; Dembo M
    Biophys J; 1995 Apr; 68(4):1222-30. PubMed ID: 7787014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate kinetic modeling of alkaline phosphatase in the Escherichia coli periplasm: implications for enzyme properties and substrate diffusion.
    Martinez MB; Flickinger MC; Nelsestuen GL
    Biochemistry; 1996 Jan; 35(4):1179-86. PubMed ID: 8573572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic theory model for ion movement through biological membranes. 3. Steady-state electrical properties with solution asymmetry.
    Mackey MC; McNeel ML
    Biophys J; 1971 Aug; 11(8):664-74. PubMed ID: 5116582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [New spatial-temporal dynamics in a reaction-electrodiffusion system].
    Pliusnina TIu; Lobanov AI; Lavrova AI; Starozhilova TK; Riznichenko GIu; Rubin AB
    Biofizika; 2002; 47(2):277-82. PubMed ID: 11969164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-mediated enzymatic reactions: simulations of tissue factor activation of factor X on a lipid surface.
    Gentry R; Ye L; Nemerson Y
    Biophys J; 1995 Aug; 69(2):362-71. PubMed ID: 8527649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. III. A minimal model.
    Plesner IW; Plesner L; Nørby JG; Klodos I
    Biochim Biophys Acta; 1981 May; 643(2):483-94. PubMed ID: 6261818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic facilitation by diffusion of adsorbed substrate on membrane surface.
    Nayudu PR; Hannaford P; Lowe RM
    Biochem Biophys Res Commun; 1986 Jul; 138(2):803-12. PubMed ID: 3741435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.