BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 648280)

  • 1. Selective digestion of mouse metaphase chromosomes.
    Rattner JB; Krystal G; Hamkalo BA
    Chromosoma; 1978 Apr; 66(3):259-68. PubMed ID: 648280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of centromeric heterochromatin by restriction endonuclease digestion of mouse L929 cells.
    Lica L; Hamkalo B
    Chromosoma; 1983; 88(1):42-9. PubMed ID: 6309483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron microscopy and biochemical analysis of mouse metaphase chromosomes after digestion with restriction endonucleases.
    Gosálvez J; Sumner AT; López-Fernández C; Rossino R; Goyanes V; Mezzanotte R
    Chromosoma; 1990 Apr; 99(1):36-43. PubMed ID: 1692784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold.
    Hutchison NJ; Langer-Safer PR; Ward DC; Hamkalo BA
    J Cell Biol; 1982 Nov; 95(2 Pt 1):609-18. PubMed ID: 6183277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ nick translation distinguishes between C-band positive regions on mouse chromosomes.
    Adolph S
    Chromosoma; 1988; 96(2):102-6. PubMed ID: 2832136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse satellite DNA, centromere structure, and sister chromatid pairing.
    Lica LM; Narayanswami S; Hamkalo BA
    J Cell Biol; 1986 Oct; 103(4):1145-51. PubMed ID: 2429969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold attachment regions in centromere-associated DNA.
    Strissel PL; Espinosa R; Rowley JD; Swift H
    Chromosoma; 1996 Aug; 105(2):122-33. PubMed ID: 8753702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Structural characteristics of the centromeric heterochromatin of mice].
    Burakov VV; Onishchenko GE; Chentsov IuS
    Tsitologiia; 1980 May; 22(5):514-20. PubMed ID: 7434462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscopy of whole mount metaphase chromosomes.
    Rattner JB; Branch A; Hamkalo BA
    Chromosoma; 1975 Nov; 52(4):329-38. PubMed ID: 1192902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal differentiation of metaphase chromosomes of Indian muntjac as studied by restriction enzyme digestion, in situ hybridization with cloned DNA probes and distamycin A plus DAPI fluorescence staining.
    Ueda T; Irie S; Kato Y
    Chromosoma; 1987; 95(4):251-7. PubMed ID: 3040343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns.
    Craig JM; Earle E; Canham P; Wong LH; Anderson M; Choo KH
    Hum Mol Genet; 2003 Dec; 12(23):3109-21. PubMed ID: 14519686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractionation and initial characterization of the kinetochore from mammalian metaphase chromosomes.
    Valdivia MM; Brinkley BR
    J Cell Biol; 1985 Sep; 101(3):1124-34. PubMed ID: 3897244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin.
    Guenatri M; Bailly D; Maison C; Almouzni G
    J Cell Biol; 2004 Aug; 166(4):493-505. PubMed ID: 15302854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ADP-ribose) polymerase at active centromeres and neocentromeres at metaphase.
    Earle E; Saxena A; MacDonald A; Hudson DF; Shaffer LG; Saffery R; Cancilla MR; Cutts SM; Howman E; Choo KH
    Hum Mol Genet; 2000 Jan; 9(2):187-94. PubMed ID: 10607829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplified sequences from chromosome 15, including centromeres, nucleolar organizer regions, and centromeric heterochromatin, in homogeneously staining regions in the human melanoma cell line MeWo.
    Holden JJ; Reimer DL; Higgins MJ; Roder JC; White BN
    Cancer Genet Cytogenet; 1985 Jan; 14(1-2):131-46. PubMed ID: 2578090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of primary constriction and heterochromatin in mouse does not require minor satellite DNA.
    Vig BK; Richards BT
    Exp Cell Res; 1992 Aug; 201(2):292-8. PubMed ID: 1639129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells.
    Appelgren H; Kniola B; Ekwall K
    J Cell Sci; 2003 Oct; 116(Pt 19):4035-42. PubMed ID: 12928332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of heterochromatin for cohesion at centromeres.
    Bernard P; Maure JF; Partridge JF; Genier S; Javerzat JP; Allshire RC
    Science; 2001 Dec; 294(5551):2539-42. PubMed ID: 11598266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Telomere and centromere association tendencies in the human male metaphase complement.
    Kirsch-Volders M; Hens L; Susanne C
    Hum Genet; 1980; 54(1):69-77. PubMed ID: 7390482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of detectable kinetochores on some chromosomes in mouse x human hybrids.
    Vig BK; Sternes K; Paweletz N
    Eur J Cell Biol; 1991 Dec; 56(2):374-80. PubMed ID: 1802720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.