BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 6483278)

  • 21. Reconstructing the ancestral vertebrate brain.
    Sugahara F; Murakami Y; Pascual-Anaya J; Kuratani S
    Dev Growth Differ; 2017 May; 59(4):163-174. PubMed ID: 28447337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evolution of early vertebrate photoreceptors.
    Collin SP; Davies WL; Hart NS; Hunt DM
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2925-40. PubMed ID: 19720654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunochemical evidence that the single lactate dehydrogenase of lampreys is more similar to LDHB4 than to LDHA4 of hagfish.
    Baldwin J; Lake PS; Moon TW
    J Exp Zool; 1987 Jan; 241(1):1-8. PubMed ID: 3559497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes.
    Mallatt J; Sullivan J
    Mol Biol Evol; 1998 Dec; 15(12):1706-18. PubMed ID: 9866205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution and ecology of retinal photoreception in early vertebrates.
    Collin SP
    Brain Behav Evol; 2010; 75(3):174-85. PubMed ID: 20733293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Palaeobiology: calcification of early vertebrate cartilage.
    Janvier P; Arsenault M
    Nature; 2002 Jun; 417(6889):609. PubMed ID: 12050653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The brains of lampreys and hagfishes: characteristics, characters, and comparisons.
    Wicht H
    Brain Behav Evol; 1996; 48(5):248-61. PubMed ID: 8932866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record.
    Sansom RS; Gabbott SE; Purnell MA
    Proc Biol Sci; 2011 Apr; 278(1709):1150-7. PubMed ID: 20947532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Counts of axons in electron microscopic sections of ventral roots in lampreys.
    Rovainen CM; Dill DA
    J Comp Neurol; 1984 May; 225(3):433-40. PubMed ID: 6725652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The sensory biology of the living jawless fishes: a phylogenetic assessment.
    Braun CB
    Brain Behav Evol; 1996; 48(5):262-76. PubMed ID: 8932867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light adaptation and the evolution of vertebrate photoreceptors.
    Morshedian A; Fain GL
    J Physiol; 2017 Jul; 595(14):4947-4960. PubMed ID: 28488783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glial-Schwann cell specialisations at the central-peripheral nervous system transition of a cyclostome: an ultrastructural study.
    Fraher J; Cheong E
    Acta Anat (Basel); 1995; 154(4):300-14. PubMed ID: 8773716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of the spinal nerves of the larval lamprey: IV. Spinal nerve roots of 21-mm larval and adult lampreys, with special reference to the relation of meninges with the root sheath and the perineurium.
    Nakao T; Ishizawa A
    J Comp Neurol; 1987 Feb; 256(3):386-99. PubMed ID: 3571512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological-molecular conflict in early vertebrate phylogeny.
    Miyashita T; Coates MI; Farrar R; Larson P; Manning PL; Wogelius RA; Edwards NP; Anné J; Bergmann U; Palmer AR; Currie PJ
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2146-2151. PubMed ID: 30670644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Head and backbone of the Early Cambrian vertebrate Haikouichthys.
    Shu DG; Morris SC; Han J; Zhang ZF; Yasui K; Janvier P; Chen L; Zhang XL; Liu JN; Li Y; Liu HQ
    Nature; 2003 Jan; 421(6922):526-9. PubMed ID: 12556891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain.
    Sugahara F; Pascual-Anaya J; Oisi Y; Kuraku S; Aota S; Adachi N; Takagi W; Hirai T; Sato N; Murakami Y; Kuratani S
    Nature; 2016 Mar; 531(7592):97-100. PubMed ID: 26878236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of the spinal nerves in the lamprey: II. Outflows from the spinal cord.
    Nakao T; Ishizawa A
    J Comp Neurol; 1987 Feb; 256(3):356-68. PubMed ID: 3571510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunocytochemical study of fibronectin in the sea lamprey, Petromyzon marinus, and the Atlantic hagfish, Myxine glutinosa.
    Wright GM
    Cell Tissue Res; 1986; 244(3):549-55. PubMed ID: 3719674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of the central and peripheral nervous systems in the lamprey.
    Murakami Y; Watanabe A
    Dev Growth Differ; 2009 Apr; 51(3):197-205. PubMed ID: 19298554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye.
    Gabbott SE; Donoghue PC; Sansom RS; Vinther J; Dolocan A; Purnell MA
    Proc Biol Sci; 2016 Aug; 283(1836):. PubMed ID: 27488650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.