These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 6484198)
1. Novel fractionation schemes and high linear energy transfer. Douglas BG; Castro JR Prog Exp Tumor Res; 1984; 28():152-65. PubMed ID: 6484198 [No Abstract] [Full Text] [Related]
2. Calculations pertaining to the use of fast (equal to or less than 50-MeV) neutrons in cancer radiotherapy. Alsmiller RG; Barish J Med Phys; 1974; 1(2):51-7. PubMed ID: 4215946 [No Abstract] [Full Text] [Related]
3. Clinical considerations in the use of thermal and epithermal neutron beams for neutron capture therapy. Zamenhof RG; Madoc-Jones H; Harling OK; Bernard JA Basic Life Sci; 1989; 50():121-34. PubMed ID: 2751604 [No Abstract] [Full Text] [Related]
4. A method for calculating the absorbed dose near interface from 10B(n, alpha)7Li reaction. Kitao K Radiat Res; 1975 Feb; 61(2):304-15. PubMed ID: 803317 [No Abstract] [Full Text] [Related]
5. [Efficacy of cancer therapy by fast neutrons]. Tsunemoto H Nihon Rinsho; 1985 Feb; 43(2):430-48. PubMed ID: 3889419 [No Abstract] [Full Text] [Related]
7. Fractionation considerations for boron neutron capture therapy: the perspective of a clinician. Meek AG Basic Life Sci; 1989; 50():113-4. PubMed ID: 2751602 [No Abstract] [Full Text] [Related]
8. An historical survey of radiobiology and radiotherapy with fast neutrons. Field SB Curr Top Radiat Res Q; 1976 Jan; 11(1):1-86. PubMed ID: 1106959 [TBL] [Abstract][Full Text] [Related]
9. Some considerations of physical and biological factors in radiotherapy with high-LET radiations including heavy particles, pi mesons, and fast neutrons. Tobias CA; Lyman JT; Lawrence JH Prog At Med; 1971; 3():167-218. PubMed ID: 5004402 [No Abstract] [Full Text] [Related]
10. Dose bracketing in boron neutron capture therapy. Gahbauer R; Kanellitsas C; Blue T; Wang C; Clendenon N; Fairchild R; Laster B; McGregor J; Goodman J Strahlenther Onkol; 1989; 165(2-3):229-30. PubMed ID: 2494738 [No Abstract] [Full Text] [Related]
11. The interpretation of dose calculations and cell-survival measurements for the boron neutron capture therapy of brain tumours with 24 keV neurons. Mill AJ; Harrison KG Br J Radiol; 1988 Dec; 61(732):1147-54. PubMed ID: 3219496 [TBL] [Abstract][Full Text] [Related]
12. Possibilities for the application of fast neutrons in radiotherapy: recovery and oxygen enhancement of radiation induced damage in relation to linear energy transfer. Barendsen GW Eur J Cancer (1965); 1966 Dec; 2(4):333-45. PubMed ID: 5980824 [No Abstract] [Full Text] [Related]
15. Developments in radiotherapy other than heavy particle beams. Fowler JF Int J Radiat Oncol Biol Phys; 1977; 3():351-8. PubMed ID: 207661 [No Abstract] [Full Text] [Related]
16. Japanese experience with clinical trials of fast neutrons. Tsunemoto H; Arai T; Morita S; Ishikawa T; Aoki Y; Takada N; Kamata S Int J Radiat Oncol Biol Phys; 1982 Dec; 8(12):2169-72. PubMed ID: 6298157 [No Abstract] [Full Text] [Related]
17. Head phantom experiment and calculation for NCT using various neutron beams. Matsumoto T; Aizawa O Strahlenther Onkol; 1989; 165(2-3):98-100. PubMed ID: 2494756 [No Abstract] [Full Text] [Related]
18. A stochastic model for high-LET response for boron neutron capture therapy (BNCT). Wheeler FJ; Griebenow ML; Wessol DE; Nigg DW; Anderl RA Basic Life Sci; 1989; 50():165-78. PubMed ID: 2751606 [No Abstract] [Full Text] [Related]
19. Comparative radiobiological measurements with two high-energy cyclotron-produced neutron beams presently used for radiotherapy. Hall EJ; Novak JK; Marino SA Br J Radiol; 1974 Dec; 47(564):882-7. PubMed ID: 4215532 [No Abstract] [Full Text] [Related]
20. A linear quadratic analysis of differing fractionation schemes for prophylactic cranial irradiation. Krosnick SH; Wazer DE J Clin Oncol; 1990 Sep; 8(9):1599-600. PubMed ID: 2391560 [No Abstract] [Full Text] [Related] [Next] [New Search]