BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6484503)

  • 1. Subcellular distribution of potassium in striated muscles.
    Edelmann L
    Scan Electron Microsc; 1984; (Pt 2):875-88. PubMed ID: 6484503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal freeze-drying of cryosections and bulk specimens for X-ray microanalysis.
    Edelmann L
    Scanning Microsc Suppl; 1994; 8():67-76; discussion 76-81. PubMed ID: 7638502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron probe X-ray microanalysis of K, Rb, Cs, and T1 in cryosections of striated muscle.
    Edelmann L
    Physiol Chem Phys Med NMR; 1983; 15(4):337-44. PubMed ID: 6608741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium binding sites in muscle: electron microscopic visualization of K, Rb, and Cs in freeze-dried preparations and autoradiography at liquid nitrogen temperature using 86Rb and 134Cs.
    Edelmann L
    Histochemistry; 1980; 67(3):233-42. PubMed ID: 6967478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K+ localization in muscle cells by autoradiography, and identification of K+ adsorbing sites in living muscle cells with uranium binding sites in electron micrographs of fixed cell preparations.
    Ling GN
    Physiol Chem Phys; 1977; 9(4-5):319-27. PubMed ID: 613330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cell water problem posed by electron microscopic studies of ion binding in muscle.
    Edelmann L
    Scanning Microsc; 1988 Jun; 2(2):851-65. PubMed ID: 3399854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium adsorption sites in frog muscle visualized by cesium and thallium under the transmission electron microscope.
    Edelmann L
    Physiol Chem Phys; 1977; 9(4-5):313-7. PubMed ID: 613329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-dried embedded specimens for biological microanalysis.
    Edelmann L
    Scan Electron Microsc; 1986; (Pt 4):1337-56. PubMed ID: 3544191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential localized uptake of K+ and Cs+ over Na+ in the A-band of freeze-dried embedded muscle section: detection by x-ray microanalysis and laser microprobe mass analysis.
    Edelmann L
    Physiol Chem Phys; 1980; 12(6):509-14. PubMed ID: 7267736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contracting muscle: a challenge for freeze-substitution and low temperature embedding.
    Edelmann L
    Scanning Microsc Suppl; 1989; 3():241-51; discussion 251-2. PubMed ID: 2616954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization and x-ray microanalysis of potassium tracers in freeze-dried and plastic embedded frog muscle.
    Edelmann L
    Microsc Acta Suppl; 1978; (2):166-74. PubMed ID: 293473
    [No Abstract]   [Full Text] [Related]  

  • 12. Adsorption staining of freeze-substituted and low temperature embedded frog skeletal muscle with cesium: a new method for the investigation of protein-ion interactions.
    Edelmann L
    Scanning Microsc Suppl; 1991; 5(4):S75-82; discussion S82-4. PubMed ID: 1726570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of subcellular element concentrations in frozen-dried, plastic-embedded, dry-cut sections and frozen-dried cryosections.
    Roos N; Barnard T
    Ultramicroscopy; 1985; 17(4):335-43. PubMed ID: 3832522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thallium and cesium in muscle cells compete for the adsorption sites normally occupied by K+.
    Ling GN
    Physiol Chem Phys; 1977; 9(3):217-25. PubMed ID: 594189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The majority of potassium ions in muscle cells is adsorbed on beta- and gamma-carboxyl groups of myosin: potassium-ion-adsorbing carboxyl groups on myosin heads engage in cross-bridge formation during contraction.
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys Med NMR; 1991; 23(3):133-60. PubMed ID: 1775537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature techniques for X-ray microanalysis in pathology: alternatives to cryoultramicrotomy.
    Wroblewski J; Wróblewski R; Roomans GM
    J Electron Microsc Tech; 1988 May; 9(1):83-98. PubMed ID: 3199232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray microanalysis in cryosections of natively frozen Paramecium caudatum with regard to ion distribution in ciliates.
    Schmitz M; Meyer R; Zierold K
    Scan Electron Microsc; 1985; (Pt 1):433-45. PubMed ID: 4001861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation methods for quantitative electron probe X-ray microanalysis of rat exocrine pancreas: a review.
    Roos N; Barnard T
    Scan Electron Microsc; 1986; (Pt 2):703-11. PubMed ID: 3541152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature techniques in biomedical microanalysis.
    Wróblewski R; Wroblewski J; Roomans GM
    Scanning Microsc; 1987 Sep; 1(3):1225-40. PubMed ID: 3310208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of different cryopreparations on the distribution of ions in bullfrog myocard cells.
    Meyer R; Schmitz M; Zierold K
    Scan Electron Microsc; 1985; (Pt 1):419-31. PubMed ID: 2408323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.