These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 648531)
1. Conformational studies of some 2':3'-cyclic mononucleotides in solution by different nuclear-magnetic-resonance methods. Geraldes CF; Williams RJ Eur J Biochem; 1978 Apr; 85(2):471-8. PubMed ID: 648531 [TBL] [Abstract][Full Text] [Related]
2. Nuclear-magnetic-resonance studies of 5'-ribonucleotide and 5'-deoxyribonucleotide conformations in solution using the lanthanide probe method. Dobson CM; Geraldes CF; Ratcliffe G; Williams RJ Eur J Biochem; 1978 Jul; 88(1):259-66. PubMed ID: 27362 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide torsional flexibility in solution and the use of the lanthanides as nuclear-magnetic-resonance conformation probes. The case of adenosine 5'-monophosphate. Geraldes CF; Williams RJ Eur J Biochem; 1978 Apr; 85(2):463-70. PubMed ID: 648530 [TBL] [Abstract][Full Text] [Related]
4. Determination of the solution conformation of adenosein 2':3'-monophosphate by nuclear magnetic resonance with lanthanide probes. Fazakerley GV; Wolfe MA Eur J Biochem; 1977 Apr; 74(2):337-41. PubMed ID: 192552 [TBL] [Abstract][Full Text] [Related]
5. Nuclear-magnetic-resonance study of the conformation of a dinucleotide in solution using the lanthanide probe method. Geraldes CF; Williams RJ Eur J Biochem; 1979 Jun; 97(1):93-101. PubMed ID: 113214 [TBL] [Abstract][Full Text] [Related]
6. [Nucleotide conformation in aqueous solutions by the NMR spectrum lanthanide shift method]. Babushkina TA; Buikliskiĭ VD; Zolin VF; Koreneva LG; Sheveleva IS Biofizika; 1981; 26(2):187-92. PubMed ID: 7260123 [TBL] [Abstract][Full Text] [Related]
7. Interrelation between glycosidic torsion, sugar pucker, and backbone conformation in 5'-beta-nucleotides. A 1H and 31P fast Fourier transform nuclear magnetic resonance investigation of the conformation of 8-aza-5'-beta-adenosine monophosphate and 8-aza-5'-beta-guanosine monophosphate. Lee CH; Evans FE; Sarma RH J Biol Chem; 1975 Feb; 250(4):1290-6. PubMed ID: 1112806 [TBL] [Abstract][Full Text] [Related]
8. Nuclear magnetic resonance studies of 2'- and 3'-ribonucleotide structures in solution. Davies DB; Danyluk SS Biochemistry; 1975 Feb; 14(3):543-54. PubMed ID: 1111570 [TBL] [Abstract][Full Text] [Related]
9. Quantitative determination of the conformation of ATP in aqueous solution using the lanthanide cations as nuclear-magnetic-resonance probes. Tanswell P; Thornton JM; Korda AV; Williams RJ Eur J Biochem; 1975 Sep; 57(1):135-45. PubMed ID: 240716 [TBL] [Abstract][Full Text] [Related]
10. Conformation of mononucleotides and dinucleoside monophosphates. P[H] and H[H] nuclear Overhauser effects. Hart PA Biophys J; 1978 Dec; 24(3):833-48. PubMed ID: 737288 [TBL] [Abstract][Full Text] [Related]
11. Quantitative determination of conformations of flexible molecules in solution using lanthanide ions as nuclear magnetic resonance probes: application to adenosine-5'-monophosphate. Barry CD; Glasel JA; Williams RJ; Xavier AV J Mol Biol; 1974 Apr; 84(4):471-09. PubMed ID: 4840868 [No Abstract] [Full Text] [Related]
12. Interaction of La (III) and Tb (III) ions with purine nucleotides: evidence for metal chelation (N-7-M-PO3) and the effect of macrochelate formation on the nucleotide sugar conformation. Tajmir-Riahi HA Biopolymers; 1991 Aug; 31(9):1065-75. PubMed ID: 1664746 [TBL] [Abstract][Full Text] [Related]
13. [Nuclear magnetic resonance study of the conformation in nucleotides, oligonucleotides, and their analogs. I. Conformation of adenosine-3',5'-cyclic phosphate and its analogs in aqueous solutions]. Bobruskin ID; Guliaev NN; Kirpichnikov MP; Severin ES; Tunitskaia VA Mol Biol (Mosk); 1979; 13(1):118-28. PubMed ID: 223036 [TBL] [Abstract][Full Text] [Related]
14. 1H NMR studies on the conformational characteristics of 2-thiopyrimidine nucleotides found in transfer RNAs. Yokoyama S; Yamaizumi Z; Nishimura S; Miyazawa T Nucleic Acids Res; 1979 Jun; 6(7):2611-26. PubMed ID: 379825 [TBL] [Abstract][Full Text] [Related]
15. Conformation of adenosine 3',5'-monophosphate in solution as studied by the NMR-desert method. II. Self-association and temperature-dependent glycosidic isomerization at pH 7. Hayashi F; Akasaka K; Hatano H Biochim Biophys Acta; 1979 Dec; 588(2):181-92. PubMed ID: 228755 [TBL] [Abstract][Full Text] [Related]
16. 1H-, 13C-, 31P-NMR studies and conformational analysis of NADP+, NADPH coenzymes and of dimers from electrochemical reduction of NADP+. Ragg E; Scaglioni L; Mondelli R; Carelli I; Casini A; Tortorella S Biochim Biophys Acta; 1991 Jan; 1076(1):49-60. PubMed ID: 1824754 [TBL] [Abstract][Full Text] [Related]
17. [Conformation of nucleotides, oligonucleotides and their analogues in aqueous solution. II. Syn-anti-equilibrium in solutions of adenosine, 5'-AMP, 3'-AMP, 5'-CMP and 3'-CMP]. Bobruskin ID; Kirpichnikov MP; Florent'ev VL Mol Biol (Mosk); 1979; 13(4):870-87. PubMed ID: 470943 [TBL] [Abstract][Full Text] [Related]
18. Determination of the syn-anti equilibrium of some purine 3':5'-nucleotides by nuclear-magnetic-relaxation perturbation in the presence of a lanthanide-ion probe. Fazakerley GV; Russell JC; Wolfe MA Eur J Biochem; 1977 Jun; 76(2):601-5. PubMed ID: 196852 [TBL] [Abstract][Full Text] [Related]
19. Conformational study of cyclic nucleotides. Lanthanide ion assisted analysis of the hydrogen-1 nuclear magnetic resonance spectra. Kainosho M; Ajisaka K J Am Chem Soc; 1975 Nov; 97(23):6839-43. PubMed ID: 1184885 [No Abstract] [Full Text] [Related]
20. Predicting the NMR spectra of nucleotides by DFT calculations: cyclic uridine monophosphate. Bagno A; Rastrelli F; Saielli G Magn Reson Chem; 2008 Jun; 46(6):518-24. PubMed ID: 18327890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]