These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 6487240)
21. Alterations in energy metabolism and ultrastructure upon reperfusion of the ischemic myocardium after coronary occlusion. Puri PS; Varley KG; Kim SW; Barwinsky J; Cohen M; Dhalla NS Am J Cardiol; 1975 Aug; 36(2):234-43. PubMed ID: 1080352 [TBL] [Abstract][Full Text] [Related]
22. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Murry CE; Richard VJ; Reimer KA; Jennings RB Circ Res; 1990 Apr; 66(4):913-31. PubMed ID: 2317895 [TBL] [Abstract][Full Text] [Related]
23. The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion. Ambrosio G; Zweier JL; Flaherty JT J Mol Cell Cardiol; 1991 Dec; 23(12):1359-74. PubMed ID: 1811055 [TBL] [Abstract][Full Text] [Related]
24. Recovery from prolonged abnormalities of canine myocardium salvaged from ischemic necrosis by coronary reperfusion. Kloner RA; DeBoer LW; Darsee JR; Ingwall JS; Braunwald E Proc Natl Acad Sci U S A; 1981 Nov; 78(11):7152-6. PubMed ID: 7031671 [TBL] [Abstract][Full Text] [Related]
25. Preservation of high-energy phosphates by verapamil in reperfused myocardium. Lange R; Ingwall J; Hale SL; Alker KJ; Braunwald E; Kloner RA Circulation; 1984 Oct; 70(4):734-41. PubMed ID: 6478571 [TBL] [Abstract][Full Text] [Related]
26. Responses of myocardial high energy phosphates and wall thickening to prolonged regional hypoperfusion induced by subtotal coronary stenosis. Zhang J; Path G; Chepuri V; Xu Y; Yoshiyama M; Bache RJ; From AH; Uğurbil K Magn Reson Med; 1993 Jul; 30(1):28-37. PubMed ID: 8371671 [TBL] [Abstract][Full Text] [Related]
27. Preconditioning does not attenuate myocardial stunning. Ovize M; Przyklenk K; Hale SL; Kloner RA Circulation; 1992 Jun; 85(6):2247-54. PubMed ID: 1591839 [TBL] [Abstract][Full Text] [Related]
28. [Biochemical effects of reperfusion after regional myocardial ischemia of different duration in the open chest dog]. Font B; Vial C; Goldschmidt D; Gautheron DC C R Seances Acad Sci D; 1979 Jan; 288(3):367-40. PubMed ID: 111859 [TBL] [Abstract][Full Text] [Related]
29. Contractile and biochemical effects of coronary reperfusion after extended periods of coronary occlusion. Puri PS Am J Cardiol; 1975 Aug; 36(2):244-51. PubMed ID: 1155345 [TBL] [Abstract][Full Text] [Related]
30. Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. DeBoer LW; Ingwall JS; Kloner RA; Braunwald E Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5471-5. PubMed ID: 6933566 [TBL] [Abstract][Full Text] [Related]
31. Postischemic recovery in the stunned myocardium after reperfusion in the presence or absence of a flow-limiting coronary artery stenosis. Farber NE; Pieper GM; Gross GJ Am Heart J; 1988 Aug; 116(2 Pt 1):407-20. PubMed ID: 3400566 [TBL] [Abstract][Full Text] [Related]
32. Correlation between biochemical and contractile changes after myocardial ischemia and revascularization. Puri PS Recent Adv Stud Cardiac Struct Metab; 1975; 7():161-9. PubMed ID: 1226430 [TBL] [Abstract][Full Text] [Related]
33. Depressed high-energy phosphate content in hypertrophied ventricles of animal and man: the biologic basis for increased sensitivity to ischemic injury. Peyton RB; Jones RN; Attarian D; Sink JD; Van Trigt P; Currie WD; Wechsler AS Ann Surg; 1982 Sep; 196(3):278-84. PubMed ID: 6214220 [TBL] [Abstract][Full Text] [Related]
34. Is adenosine 5'-triphosphate derangement or free-radical-mediated injury the major cause of ventricular dysfunction during reperfusion? Role of adenine nucleoside transport in myocardial reperfusion injury. Abd-Elfattah AS; Jessen ME; Hanan SA; Tuchy G; Wechsler AS Circulation; 1990 Nov; 82(5 Suppl):IV341-50. PubMed ID: 2225426 [TBL] [Abstract][Full Text] [Related]
35. Relationship between adenine nucleotide metabolism and irreversible ischemic tissue damage in isolated perfused rat heart. Vary TC; Angelakos ET; Schaffer SW Circ Res; 1979 Aug; 45(2):218-25. PubMed ID: 445706 [TBL] [Abstract][Full Text] [Related]
37. The relationships of high energy phosphates, tissue pH, and regional blood flow to diastolic distensibility in the ischemic dog myocardium. Momomura S; Ingwall JS; Parker JA; Sahagian P; Ferguson JJ; Grossman W Circ Res; 1985 Dec; 57(6):822-35. PubMed ID: 4064257 [TBL] [Abstract][Full Text] [Related]
38. Alterations in the distribution of high-energy phosphates during ischemia in a canine model of reperfusion-induced ventricular fibrillation. Hale SL; Alker KJ; Lo HM; Ingwall JS; Kloner RA Am Heart J; 1985 Sep; 110(3):590-4. PubMed ID: 4036784 [TBL] [Abstract][Full Text] [Related]
39. Ischemic preconditioning and long-chain acyl carnitine in the canine heart. Simkhovich BZ; Hale SL; Ovize M; Przyklenk K; Kloner RA Coron Artery Dis; 1993 Apr; 4(4):387-92. PubMed ID: 8261212 [TBL] [Abstract][Full Text] [Related]