These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6487272)

  • 61. Isolation of 3-hydroxyanthranilic acid from pathological human urine after administration of L-tryptophan.
    MUSAJO L; SPADA A; COPPINI D
    J Biol Chem; 1952 May; 196(1):185-8. PubMed ID: 12980955
    [No Abstract]   [Full Text] [Related]  

  • 62. The measurement of the intrinsic alkaline Bohr effect of various human haemoglobins by isoelectric focusing.
    Poyart CF; Guesnon P; Bohn BM
    Biochem J; 1981 May; 195(2):493-501. PubMed ID: 7316965
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An abundant erythroid protein that stabilizes free alpha-haemoglobin.
    Kihm AJ; Kong Y; Hong W; Russell JE; Rouda S; Adachi K; Simon MC; Blobel GA; Weiss MJ
    Nature; 2002 Jun; 417(6890):758-63. PubMed ID: 12066189
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The mechanism of insulin action. The effect of insulin action. The effect of insulin on the allosteric properties on intracellular haemoglobin.
    Dormandy TL
    J Physiol; 1966 Mar; 183(2):378-406. PubMed ID: 4287485
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The modification of proteins by 3-hydroxykynurenine.
    Stutchbury GM; Truscott RJ
    Exp Eye Res; 1993 Aug; 57(2):149-55. PubMed ID: 8405181
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biosynthesis of the actinomycin chromophore; enzymatic conversion of 4-methyl-3-hydroxyanthranilic acid to actinocin.
    KATZ E; WEISSBACH H
    J Biol Chem; 1962 Mar; 237():882-6. PubMed ID: 14454375
    [No Abstract]   [Full Text] [Related]  

  • 67. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1982 May; 204(2):405-15. PubMed ID: 7115337
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Studies on experimental leukemia. Part 5. On the leukemogenic effect of 3-hydroxyanthranilic acid in RFH mice].
    EHRHART H; GEORGII A; STANISLAWSKI K
    Klin Wochenschr; 1959 Oct; 37():1053-9. PubMed ID: 13819602
    [No Abstract]   [Full Text] [Related]  

  • 69. Iron incorporation and haemoglobin synthesis in erythropoietic cells during the ontogenesis of the mouse.
    Schalekamp M; Harrison PR; Paul J
    J Embryol Exp Morphol; 1975 Oct; 34(2):355-71. PubMed ID: 1194835
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Oxidative condensation of 2-amino-4-methylphenol to dihydrophenoxazinone compound by human hemoglobin.
    Tomoda A; Arisawa M; Koshimura S
    J Biochem; 1991 Dec; 110(6):1004-7. PubMed ID: 1794970
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tryptophan-Derived 3-Hydroxyanthranilic Acid Contributes to Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice In Vivo.
    Wang Q; Ding Y; Song P; Zhu H; Okon I; Ding YN; Chen HZ; Liu DP; Zou MH
    Circulation; 2017 Dec; 136(23):2271-2283. PubMed ID: 28978552
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Haemoglobin O2 binding in newborn and adult rabbits.
    Holter PH; Kierulf P; Refsum HE
    Acta Physiol Scand; 1987 Jun; 130(2):349-56. PubMed ID: 3111176
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Formation of 5-hydroxyanthranilic acid from anthranilic acid in animals].
    KOTAKE Y; SHIRAI Y
    Hoppe Seylers Z Physiol Chem; 1953; 295():160-3. PubMed ID: 13128710
    [No Abstract]   [Full Text] [Related]  

  • 74. Oxidation of iron-nitrosyl-hemoglobin by dehydroascorbic acid releases nitric oxide to form nitrite in human erythrocytes.
    Sibmooh N; Piknova B; Rizzatti F; Schechter AN
    Biochemistry; 2008 Mar; 47(9):2989-96. PubMed ID: 18225862
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kinetic and spectroscopic properties of the cyanide complexes of ferrous haemoglobins I and IV from trout blood.
    Antonini G; Bellelli A; Brunori M; Falcioni G
    Biochem J; 1996 Mar; 314 ( Pt 2)(Pt 2):533-40. PubMed ID: 8670067
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Oxidative interactions between haemoglobin and membrane lipid. A liposome model.
    Szebeni J; Winterbourn CC; Carrell RW
    Biochem J; 1984 Jun; 220(3):685-92. PubMed ID: 6466294
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analyis of met-form haemoglobins in human erythrocytes of normal adults and of a patient with hereditary methaemoglobinaemia due to deficiency of NADH-cytochrome b5 reductase.
    Tomoda A; Imoto M; Hirano M; Yoneyama Y
    Biochem J; 1979 Aug; 181(2):505-7. PubMed ID: 496898
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Excretion of anthranilate and 3-hydroxyanthranilate by Saccharomyces cerevisiae: relationship to iron metabolism.
    Lesuisse E; Simon M; Klein R; Labbe P
    J Gen Microbiol; 1992 Jan; 138(1):85-9. PubMed ID: 1556559
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Histochemical demonstration of the oxidation of 3-hydroxyanthranilate (author's transl)].
    Mello De Oliveira JA; Vannucchi H
    Cell Mol Biol Incl Cyto Enzymol; 1977; 22(1):147-50. PubMed ID: 606356
    [No Abstract]   [Full Text] [Related]  

  • 80. Mechanisms and physiological function of daily haemoglobin oxidation rhythms in red blood cells.
    Beale AD; Hayter EA; Crosby P; Valekunja UK; Edgar RS; Chesham JE; Maywood ES; Labeed FH; Reddy AB; Wright KP; Lilley KS; Bechtold DA; Hastings MH; O'Neill JS
    EMBO J; 2023 Oct; 42(19):e114164. PubMed ID: 37554073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.