These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 6487280)
1. A qualitative model of the control of automated rhythmic movements: coupling between EEG and motor systems. Pögelt B; Roth N Biomed Biochim Acta; 1984; 43(4):493-9. PubMed ID: 6487280 [TBL] [Abstract][Full Text] [Related]
2. Automated rhythmic movements and their control under different experimental conditions. Pögelt B; Roth N; Pögelt A Biomed Biochim Acta; 1984; 43(4):485-91. PubMed ID: 6487279 [TBL] [Abstract][Full Text] [Related]
3. Frequency and phase relationship between the EEG and rhythmic automated movements. Pögelt B; Roth N Acta Neurobiol Exp (Wars); 1982; 42(2):163-73. PubMed ID: 7168377 [TBL] [Abstract][Full Text] [Related]
4. Relations between rhythmic brain processes and psychomotor tempo. Pögelt B Act Nerv Super (Praha); 1981 Jun; 23(2):97-101. PubMed ID: 7270027 [TBL] [Abstract][Full Text] [Related]
5. Ultradian rhythms in the EEG and task performance. Meneses Ortega S; Corsi Cabrera M Chronobiologia; 1990; 17(3):183-94. PubMed ID: 2226046 [TBL] [Abstract][Full Text] [Related]
6. [The rhythmic structure of the human EEG: the current state and trends of the research]. Fedotchev AI; Bondar' AT; Akoev IG Usp Fiziol Nauk; 2000; 31(3):39-53. PubMed ID: 11042897 [TBL] [Abstract][Full Text] [Related]
7. [The dynamics of the parameters of central nervous activation as a correlate of the motor image]. Weiss T; Beyer L; Hansen E; Rost R; Wolf A Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(5):925-9. PubMed ID: 1964338 [TBL] [Abstract][Full Text] [Related]
8. New insights into rhythmic brain activity from TMS-EEG studies. Thut G; Miniussi C Trends Cogn Sci; 2009 Apr; 13(4):182-9. PubMed ID: 19286414 [TBL] [Abstract][Full Text] [Related]
9. [Intercentral relationships and their alteration during afferent stimulation according to mathematical analysis of the human EEG]. Rusinov VS; Grindel' OM Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(3):552-61. PubMed ID: 1202820 [No Abstract] [Full Text] [Related]
11. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control. Huang D; Lin P; Fei DY; Chen X; Bai O J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679 [TBL] [Abstract][Full Text] [Related]
12. Neural networks for the coordination of the hands in time. Ullén F; Forssberg H; Ehrsson HH J Neurophysiol; 2003 Feb; 89(2):1126-35. PubMed ID: 12574485 [TBL] [Abstract][Full Text] [Related]
14. Influence of immobilization and motor loading on the 4.5--12 Hz frequency range of the EEG in rats. Cheresharov L; Stomonyakov V; Nikolov N; Boev M Acta Physiol Pharmacol Bulg; 1981; 7(4):29-35. PubMed ID: 7345890 [TBL] [Abstract][Full Text] [Related]
15. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of cortical connectivity during real and imagined rhythmic finger tapping. Stavrinou ML; Moraru L; Cimponeriu L; Della Penna S; Bezerianos A Brain Topogr; 2007; 19(3):137-45. PubMed ID: 17587169 [TBL] [Abstract][Full Text] [Related]
17. Identification of the phase code in an EEG during gripping-force tasks: a possible alternative approach to the development of the brain-computer interfaces. Logar V; Skrjanc I; Belic A; Brezan S; Koritnik B; Zidar J Artif Intell Med; 2008 Sep; 44(1):41-9. PubMed ID: 18657956 [TBL] [Abstract][Full Text] [Related]