These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6487308)

  • 1. Differential kinetics of histone H1(0) accumulation in neuronal and glial cells from rat cerebral cortex during postnatal development.
    Piña B; Martínez P; Simón L; Suau P
    Biochem Biophys Res Commun; 1984 Sep; 123(2):697-702. PubMed ID: 6487308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation and phosphorylation of histones and nonhistone chromosomal proteins in neuronal and glial nuclei purified from cerebral hemispheres of developing rat brain.
    Serra I; Avola R; Condorelli DF; Surrentino S; Renis M; Kamiyama M; Hashim GA; Giuffrida AM
    J Neurochem; 1986 Jun; 46(6):1881-7. PubMed ID: 3701336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in H1 complement in differentiating rat-brain cortical neurons.
    Piña B; Martínez P; Suau P
    Eur J Biochem; 1987 Apr; 164(1):71-6. PubMed ID: 3830185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylation of chromosomal proteins in neuronal and glial nuclei purified from cerebral hemispheres of rat during postnatal development.
    Serra I; Avola R; Lombardo B; Kamiyama M; Hashim GA; Giuffrida AM
    J Neurochem; 1985 Jun; 44(6):1779-84. PubMed ID: 3989561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the proportions of histone H1 subtypes in brain cortical neurons.
    Piña B; Suau P
    FEBS Lett; 1987 Jan; 210(2):161-4. PubMed ID: 3792560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal nuclei and glial nuclei from mammalian cerebral cortex. Nucleosome repeat lengths, DNA contents and H1 contents.
    Pearson EC; Bates DL; Prospero TD; Thomas JO
    Eur J Biochem; 1984 Oct; 144(2):353-60. PubMed ID: 6489334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone H1 subtype synthesis in neurons and neuroblasts.
    Domínguez V; Piña B; Suau P
    Development; 1992 May; 115(1):181-5. PubMed ID: 1638979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential acetylation of core histones in rat cerebral cortex neurons during development and aging.
    Piña B; Martínez P; Suau P
    Eur J Biochem; 1988 Jun; 174(2):311-5. PubMed ID: 3383848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of histone acetylation in neuronal and glial nuclei enriched rat brain fractions.
    Sarkander HI; Fleischer-Lambropoulos H; Brade WP
    FEBS Lett; 1975 Mar; 52(1):40-3. PubMed ID: 1123082
    [No Abstract]   [Full Text] [Related]  

  • 10. Differential expression and gonadal hormone regulation of histone H1(0) in the developing and adult rat brain.
    García-Segura LM; Luquín S; Martínez P; Casas MT; Suau P
    Brain Res Dev Brain Res; 1993 May; 73(1):63-70. PubMed ID: 8513555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posttranscriptional regulation of H1 zero and H3.3B histone genes in differentiating rat cortical neurons.
    Scaturro M; Cestelli A; Castiglia D; Nastasi T; Di Liegro I
    Neurochem Res; 1995 Aug; 20(8):969-76. PubMed ID: 8587656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in chromatin organization in rat cerebral hemisphere neurons and analysis of DNA reassociation kinetics.
    Greenwood PD; Heikkila JJ; Brown IR
    Neurochem Res; 1982 May; 7(5):525-39. PubMed ID: 7121711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of protein phosphorylation by triiodothyronine (T3) in neural cell cultures. Part II: Neurons.
    Ruel J; Gavaret JM; Luo M; Dussault JH
    Mol Cell Endocrinol; 1986 May; 45(2-3):233-40. PubMed ID: 3709963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental changes in polypeptide composition of, and precursor incorporation into, cellular and subcellular fractions of rat cerebral cortex.
    Burgoyne RD; Rudge JS; Murphy S
    J Neurochem; 1981 Feb; 36(2):661-9. PubMed ID: 7463082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development.
    Chowdhury GM; Patel AB; Mason GF; Rothman DL; Behar KL
    J Cereb Blood Flow Metab; 2007 Dec; 27(12):1895-907. PubMed ID: 17440492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA synthesis in neuronal and glial cell nuclei from rat cerebral hemispheres during early postnatal development.
    Serra I; Avola R; Vanella A; Lombardo B; Agodi A; Giuffrida AM
    Neurochem Res; 1984 Aug; 9(8):1051-63. PubMed ID: 6208492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prenatal exposure to ethanol alters the postnatal development and transformation of radial glia to astrocytes in the cortex.
    Miller MW; Robertson S
    J Comp Neurol; 1993 Nov; 337(2):253-66. PubMed ID: 8276999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of enriched fractions from cerebral cortex containing isolated, metabolically active neuronal and glial cells.
    Rose SP
    Biochem J; 1967 Jan; 102(1):33-43. PubMed ID: 4291562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal development of the mouse cerebral neocortex. IV. Evolution of the total cortical volume, of the population of neurons and glial cells.
    Heumann D; Leuba G; Rabinowicz T
    J Hirnforsch; 1978; 19(5):385-93. PubMed ID: 748450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial cells contribute more to iron and aluminum accumulation but are more resistant to oxidative stress than neuronal cells.
    Oshiro S; Kawahara M; Kuroda Y; Zhang C; Cai Y; Kitajima S; Shirao M
    Biochim Biophys Acta; 2000 Nov; 1502(3):405-14. PubMed ID: 11068183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.