These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6487587)

  • 41. Gramicidin A induced fusion of large unilamellar dioleoylphosphatidylcholine vesicles and its relation to the induction of type II nonbilayer structures.
    Tournois H; Fabrie CH; Burger KN; Mandersloot J; Hilgers P; van Dalen H; de Gier J; de Kruijff B
    Biochemistry; 1990 Sep; 29(36):8297-307. PubMed ID: 1701325
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diphtheria toxin induces fusion of small unilamellar vesicles at low pH.
    Cabiaux V; Vandenbranden M; Falmagne P; Ruysschaert JM
    Biochim Biophys Acta; 1984 Aug; 775(1):31-6. PubMed ID: 6466658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spontaneous vesiculation of phospholipids: a simple and quick method of forming unilamellar vesicles.
    Hauser H; Gains N
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):1683-7. PubMed ID: 6952221
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Short-chain phospholipids as detergents.
    Hauser H
    Biochim Biophys Acta; 2000 Nov; 1508(1-2):164-81. PubMed ID: 11090824
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phase behavior of mixed phosphatidylglycerol/phosphatidylcholine multilamellar and unilamellar vesicles.
    Lentz BR; Alford DR; Hoechli M; Dombrose FA
    Biochemistry; 1982 Aug; 21(18):4212-9. PubMed ID: 7126537
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The membrane potential has no detectable effect on the phosphocholine headgroup conformation in large unilamellar phosphatidylcholine vesicles as determined by 2H-NMR.
    Leenhouts JM; Chupin V; de Gier J; de Kruijff B
    Biochim Biophys Acta; 1993 Dec; 1153(2):257-61. PubMed ID: 8274495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vesicle-micelle structural transition of phosphatidylcholine bilayers and Triton X-100.
    De la Maza A; Parra JL
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):907-14. PubMed ID: 7980461
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phase behavior of large unilamellar vesicles composed of synthetic phospholipids.
    Parente RA; Lentz BR
    Biochemistry; 1984 May; 23(11):2353-62. PubMed ID: 6477871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of phospholipid acyl chains in the activation of mitochondrial ATPase complex.
    Bruni A; van Dijck PW; de Gier J
    Biochim Biophys Acta; 1975 Oct; 406(2):315-28. PubMed ID: 127615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles.
    De Kruijff B; Cullis PR; Radda GK
    Biochim Biophys Acta; 1976 Jul; 436(4):729-40. PubMed ID: 952917
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations.
    Ortiz A; Killian JA; Verkleij AJ; Wilschut J
    Biophys J; 1999 Oct; 77(4):2003-14. PubMed ID: 10512820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The osmotic response of large unilamellar vesicles studied by quasielastic light scattering.
    Hantz E; Cao A; Escaig J; Taillandier E
    Biochim Biophys Acta; 1986 Nov; 862(2):379-86. PubMed ID: 3778898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magic-angle spinning and solution 13C nuclear magnetic resonance studies of medium- and long-chain cholesteryl esters in model bilayers.
    Salmon A; Hamilton JA
    Biochemistry; 1995 Dec; 34(49):16065-73. PubMed ID: 8519763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles.
    McLean LR; Phillips MC
    Biochemistry; 1981 May; 20(10):2893-900. PubMed ID: 7195733
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of sterol structure on acyl chain ordering in phosphatidylcholine vesicles: a deuterium nuclear magnetic resonance and electron spin resonance study.
    Dahl CE
    Biochemistry; 1981 Dec; 20(25):7158-61. PubMed ID: 6274389
    [No Abstract]   [Full Text] [Related]  

  • 56. Effect of glycophorin on lipid polymorphism. A 31P-NMR study.
    Taraschi TF; De Kruijff B; Verkleij A; Van Echteld CJ
    Biochim Biophys Acta; 1982 Feb; 685(2):153-61. PubMed ID: 7059597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon-13 nuclear magnetic resonance studies of cerebroside derivatives and their properties in lecithin bilayers (1).
    Tkaczuk P; Thornton ER
    Biochem Biophys Res Commun; 1979 Dec; 91(4):1415-22. PubMed ID: 575043
    [No Abstract]   [Full Text] [Related]  

  • 58. The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze-thawing and freeze-drying.
    Strauss G; Schurtenberger P; Hauser H
    Biochim Biophys Acta; 1986 Jun; 858(1):169-80. PubMed ID: 3011090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fatty acid transfer in taurodeoxycholate mixed micelles.
    Narayanan VS; Storch J
    Biochemistry; 1996 Jun; 35(23):7466-73. PubMed ID: 8652524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calorimetric studies on saturated mixed-chain lecithin-water systems. Nonequivalence of acyl chains in the thermotropic phase transition.
    Stümpel J; Nicksch A; Eibl H
    Biochemistry; 1981 Feb; 20(3):662-5. PubMed ID: 7213601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.