These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6487737)

  • 21. Cytoplasmic rheology of passive neutrophils.
    Dong C; Skalak R; Sung KL
    Biorheology; 1991; 28(6):557-67. PubMed ID: 1818744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of microtubules in the viscoelastic properties of isolated cardiac muscle.
    Yamamoto S; Tsutsui H; Takahashi M; Ishibashi Y; Tagawa H; Imanaka-Yoshida K; Saeki Y; Takeshita A
    J Mol Cell Cardiol; 1998 Sep; 30(9):1841-53. PubMed ID: 9769239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passive mechanical behavior of human neutrophils: power-law fluid.
    Tsai MA; Frank RS; Waugh RE
    Biophys J; 1993 Nov; 65(5):2078-88. PubMed ID: 8298037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspiration of biological viscoelastic drops.
    Guevorkian K; Colbert MJ; Durth M; Dufour S; Brochard-Wyart F
    Phys Rev Lett; 2010 May; 104(21):218101. PubMed ID: 20867138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytoplasmic microtubules in human neutrophil degranulation: reversible inhibition by the colchicine analogue 2-methoxy-5-(2',3',4'-trimethoxyphenyl)-2,4,6-cycloheptatrien-1- one.
    Mollinedo F; Nieto JM; Andreu JM
    Mol Pharmacol; 1989 Oct; 36(4):547-55. PubMed ID: 2682203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro effect of colchicine on neutrophil granulocyte locomotion. Assessment of the effect of colchicine on chemotaxis, chemokinesis and spontaneous motility, using a modified reversible Boyden chamber.
    Valerius NH
    Acta Pathol Microbiol Scand B; 1978 Jun; 86B(3):149-54. PubMed ID: 716916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The effect of vinblastine on the viscoelastic properties of lung cancer cells].
    Zhang T; Xue Y; Qu Q; Wu Z; Cai S; Song G
    Zhongguo Fei Ai Za Zhi; 2000 Aug; 3(4):272-5. PubMed ID: 20955675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.
    Drury JL; Dembo M
    Biophys J; 2001 Dec; 81(6):3166-77. PubMed ID: 11720983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H; Sackmann E
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Normal age-related viscoelastic properties of chondrons and chondrocytes isolated from rabbit knee.
    Duan WP; Sun ZW; Li Q; Li CJ; Wang L; Chen WY; Tickner J; Zheng MH; Wei XC
    Chin Med J (Engl); 2012 Jul; 125(14):2574-81. PubMed ID: 22882942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The viscoelastic behaviors of several kinds of cancer cells and normal cells.
    Xie Y; Wang M; Cheng M; Gao Z; Wang G
    J Mech Behav Biomed Mater; 2019 Mar; 91():54-58. PubMed ID: 30529987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis.
    Glass DH; Roberts CJ; Litsky AS; Weber PA
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3919-26. PubMed ID: 18539936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties.
    Sato M; Theret DP; Wheeler LT; Ohshima N; Nerem RM
    J Biomech Eng; 1990 Aug; 112(3):263-8. PubMed ID: 2214707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic phagosome motion in J774A.1 macrophages: influence of cytoskeletal drugs.
    Möller W; Nemoto I; Matsuzaki T; Hofer T; Heyder J
    Biophys J; 2000 Aug; 79(2):720-30. PubMed ID: 10920006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphological changes induced by colchicine in neutrophils interfere with the distribution of glycogen particles.
    Pimenta PF; de Souza W
    Microsc Electron Biol Celular; 1987 Dec; 11(2):133-43. PubMed ID: 2459582
    [No Abstract]   [Full Text] [Related]  

  • 38. Time-dependent recovery of passive neutrophils after large deformation.
    Tran-Son-Tay R; Needham D; Yeung A; Hochmuth RM
    Biophys J; 1991 Oct; 60(4):856-66. PubMed ID: 1742456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models.
    Zhou C; Yue P; Feng JJ
    Ann Biomed Eng; 2007 May; 35(5):766-80. PubMed ID: 17380390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of colchicine and cytokines on MEFV expression and C5a inhibitor activity in human primary fibroblast cultures.
    Abedat S; Urieli-Shoval S; Shapira E; Calko S; Ben-Chetrit E; Matzner Y
    Isr Med Assoc J; 2002 Jan; 4(1):7-12. PubMed ID: 11802319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.