These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6487742)

  • 1. Oscillation of electrical potential in a porous membrane doped with glycerol alpha-monooleate induced by an Na+/K+ concentration gradient.
    Yoshikawa K; Sakabe K; Matsubara Y; Ota T
    Biophys Chem; 1984 Aug; 20(1-2):107-9. PubMed ID: 6487742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-excitation in a porous membrane doped with sorbitan monooleate (Span-80) induced by an Na+/K+ concentration gradient.
    Yoshikawa K; Sakabe K; Matsubara Y; Ota T
    Biophys Chem; 1985 Jan; 21(1):33-9. PubMed ID: 2578831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillation of electrical potential in a porous-membrane doped with triolein induced by an Na+/K+ concentration gradient.
    Ishii T; Kuroda Y; Yoshikawa K; Sakabe K; Matsubara Y; Iriyama K
    Biochem Biophys Res Commun; 1984 Sep; 123(2):792-6. PubMed ID: 6487313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of double-layer polarization on ion transport.
    Hainsworth AH; Hladky SB
    Biophys J; 1987 Jan; 51(1):27-36. PubMed ID: 2432953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport across glycerol monooleate bilayer lipid membranes facilitated by magnesium etiochlorin.
    Feldberg SW; Armen GH; Bell JA; Chang CK; Wang CB
    Biophys J; 1981 Apr; 34(1):149-63. PubMed ID: 7213929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical characteristics in an excitable element of lipid membrane.
    Toko K; Ozaki N; Iiyama S; Yamafuji K; Matsui Y; Yamafuji K; Saito M; Kato M
    Biophys Chem; 1991 Nov; 41(2):143-56. PubMed ID: 1773008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric oscillation in an excitable model membrane impregnated with lipid analogues.
    Iiyama S; Toko K; Yamafuji K
    Biophys Chem; 1987 Nov; 28(2):129-35. PubMed ID: 3427204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable self-sustained potential oscillations across a membrane filter impregnated with triolein.
    Urabe K; Sakaguchi H
    Biophys Chem; 1993 Jul; 47(1):41-51. PubMed ID: 8364148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers.
    Feldberg SW; Kissel G
    J Membr Biol; 1975; 20(3-4):269-300. PubMed ID: 1173599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous oscillation of electrical potential across organic liquid membranes.
    Yoshikawa K; Matsubara Y
    Biophys Chem; 1983 Apr; 17(3):183-5. PubMed ID: 6860776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin.
    Levitt DG; Elias SR; Hautman JM
    Biochim Biophys Acta; 1978 Sep; 512(2):436-51. PubMed ID: 81687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-sustained oscillations of electric potential in a model membrane.
    Toko K; Tsukiji M; Iiyama S; Yamafuji K
    Biophys Chem; 1986 Mar; 23(3-4):201-10. PubMed ID: 3708096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronized oscillatory activity in leech neurons induced by calcium channel blockers.
    Angstadt JD; Friesen WO
    J Neurophysiol; 1991 Dec; 66(6):1858-73. PubMed ID: 1812221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance.
    Gurtovenko AA; Vattulainen I
    Biophys J; 2007 Mar; 92(6):1878-90. PubMed ID: 17208976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of the effects of amphotericin B on the glucose metabolism in Saccharomyces cerevisiae in K(+)- and Na(+)-rich media.
    Wietzerbin J; Herve M; Lebourguais O; Tran-Dinh S
    Biochim Biophys Acta; 1992 Aug; 1136(2):105-12. PubMed ID: 1324008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge ulse studies of transport phenomena in bilayer membranes. II. Detailed theory of steady-state behavior and application to valinomycin-mediated potassium transport.
    Feldberg SW; Nakadomari H
    J Membr Biol; 1977 Feb; 31(1-2):81-102. PubMed ID: 839532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of peptide PV on the ionic permeability of lipid bilayer membranes.
    Ting-Beall HP; Tosteson MT; Gisin BF; Tosteson DC
    J Gen Physiol; 1974 Apr; 63(4):492-508. PubMed ID: 4820091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinitiated mediated transport of H3O+ and/or OH- across glycerol monooleate bilayers doped with magnesium octaethylporphyrin.
    Young RC; Feldberg SW
    Biophys J; 1979 Aug; 27(2):237-55. PubMed ID: 262434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillations of membrane potential across a polypeptide membrane, induced by an electrical current.
    Minoura N; Higuchi M; Ohmori T; Yamaguchi T
    Biochem Biophys Res Commun; 1998 Aug; 249(3):601-4. PubMed ID: 9731182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces.
    Pohorille A; Wilson MA
    J Chem Phys; 1996 Mar; 104(10):3760-73. PubMed ID: 11539401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.