These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6487761)

  • 1. Electrostatic fixed charge distribution in the RBC-glycocalyx and their influence upon the total free interaction energy.
    Lerche D
    Biorheology; 1984; 21(4):477-92. PubMed ID: 6487761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biophysical model for interaction of cells with a surface coat (glycocalyx). I. Electrostatic interaction profile.
    Lerche D
    J Theor Biol; 1983 Sep; 104(2):231-48. PubMed ID: 6645556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycocalyx electrostatic potential profile analysis: ion, pH, steric, and charge effects.
    Schnitzer JE
    Yale J Biol Med; 1988; 61(5):427-46. PubMed ID: 2462311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic free energy and spontaneous curvature of spherical charged layered membrane.
    Lerche D; Kozlov MM; Markin VS
    Biorheology; 1987; 24(1):23-34. PubMed ID: 3651580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of glycocalyx structure on red cell-red cell affinity in polymer suspensions.
    Rad S; Meiselman HJ; Neu B
    Colloids Surf B Biointerfaces; 2014 Nov; 123():106-13. PubMed ID: 25266979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge distribution within cell surface coats of single and interacting surfaces--a minimum free electrostatic energy approach. Conclusions for electrophoretic mobility measurements.
    Donath E; Voigt A
    J Theor Biol; 1983 Apr; 101(4):569-84. PubMed ID: 6876833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-cell affinity of senescent human erythrocytes.
    Neu B; Sowemimo-Coker SO; Meiselman HJ
    Biophys J; 2003 Jul; 85(1):75-84. PubMed ID: 12829466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape and elasticity effects on erythrocyte electrostatic repulsion.
    Papadopoulos KD; Yato A; Nguyen H
    J Theor Biol; 1985 Apr; 113(3):545-57. PubMed ID: 3999785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion-mediated red blood cell aggregation in polymer solutions.
    Neu B; Meiselman HJ
    Biophys J; 2002 Nov; 83(5):2482-90. PubMed ID: 12414682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic repulsion among erythrocytes in tube flow, demonstrated by the thickness of marginal cell-free layer.
    Suzuki Y; Tateishi N; Maeda N
    Biorheology; 1998; 35(2):155-70. PubMed ID: 10193487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational alterations within the glycocalyx of erythrocyte membranes studied by spin labelling.
    Herrmann A; Lassmann G; Groth T; Donath E; Hillebrecht B
    Biochim Biophys Acta; 1986 Sep; 861(1):111-21. PubMed ID: 3019396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of cellular properties on red cell-red cell affinity in plasma-like suspensions.
    Rad S; Neu B
    Eur Phys J E Soft Matter; 2009 Oct; 30(2):135-40. PubMed ID: 19730907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relevance of Hydrodynamic Effects for the Calculation of Outer Surface Potential of Biological Membrane Using Electrophoretic Data.
    Silva IM; Castro MC; Silva D; Cortez CM
    An Acad Bras Cienc; 2016 Jun; 88(2):751-63. PubMed ID: 27276378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction energies in lectin-induced erythrocyte aggregation.
    Sung LA; Kabat EA; Chien S
    J Cell Biol; 1985 Aug; 101(2):652-9. PubMed ID: 4019587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy balance in red cell interactions.
    Chien S; Sung LA; Simchon S; Lee MM; Jan KM; Skalak R
    Ann N Y Acad Sci; 1983; 416():190-206. PubMed ID: 6203456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the glycocalyx on the electrophoretic mobility of red cells and on streaming potentials in blood vessels: predictions of a structurally-based model.
    Mestel AJ; Mokady AJ; Parker KH; Winlove CP
    Biorheology; 1998; 35(6):365-81. PubMed ID: 10656047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic interaction between stereocilia: I. Its role in supporting the structure of the hair bundle.
    Dolgobrodov SG; Lukashkin AN; Russell IJ
    Hear Res; 2000 Dec; 150(1-2):83-93. PubMed ID: 11077194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge effects on the hindered transport of macromolecules across the endothelial surface glycocalyx layer.
    Sugihara-Seki M; Akinaga T; O-Tani H
    Biorheology; 2012; 49(5-6):301-16. PubMed ID: 23380897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of the electrokinetic behavior of human erythrocytes.
    Levine S; Levine M; Sharp KA; Brooks DE
    Biophys J; 1983 May; 42(2):127-35. PubMed ID: 6860771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionization properties of mixed lipid membranes: a Gouy-Chapman model of the electrostatic-hydrogen bond switch.
    Mengistu DH; Kooijman EE; May S
    Biochim Biophys Acta; 2011 Aug; 1808(8):1985-92. PubMed ID: 21406179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.