These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 6487768)

  • 41. Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles.
    Lou Z; Yang WJ; Stein PD
    J Biomech; 1993; 26(4-5):383-90. PubMed ID: 8478343
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube.
    Gijsen FJ; Allanic E; van de Vosse FN; Janssen JD
    J Biomech; 1999 Jul; 32(7):705-13. PubMed ID: 10400358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE
    Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Arteriosclerosis research using vascular flow models: from 2-D branches to compliant replicas.
    Friedman MH
    J Biomech Eng; 1993 Nov; 115(4B):595-601. PubMed ID: 8302047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A mathematical study of turbulent blood flow through an arterial bifurcation.
    Sidik WA; Mazumdar JN
    Australas Phys Eng Sci Med; 1994 Mar; 17(1):1-13. PubMed ID: 8198503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical analysis of steady generalized Newtonian blood flow in a 2D model of the carotid artery bifurcation.
    Baaijens JP; van Steenhoven AA; Janssen JD
    Biorheology; 1993; 30(1):63-74. PubMed ID: 8374103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm.
    Perktold K; Peter R; Resch M
    Biorheology; 1989; 26(6):1011-30. PubMed ID: 2624892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of celiac and renal artery outflows on near-wall velocities in the porcine iliac arteries.
    Clingan PA; Friedman MH
    Ann Biomed Eng; 2000 Mar; 28(3):302-8. PubMed ID: 10784094
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements.
    Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M
    Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical implementation of viscoelastic blood flow in a simplified arterial geometry.
    Rojas HA
    Med Eng Phys; 2007 May; 29(4):491-6. PubMed ID: 16919988
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical 3D-stimulation of pulsatile wall shear stress in an arterial T-bifurcation model.
    Perktold K; Peter R
    J Biomed Eng; 1990 Jan; 12(1):2-12. PubMed ID: 2296164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A review of the numerical analysis of blood flow in arterial bifurcations.
    Xu XY; Collins MW
    Proc Inst Mech Eng H; 1990; 204(4):205-16. PubMed ID: 2090123
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study.
    Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport phenomena in pulsating post-stenotic vortex flow in arteries. An interactive concept of fluid-dynamic, haemorheological and biochemical processes in white thrombus formation.
    Schmid-Schönbein H; Wurzinger LJ
    Nouv Rev Fr Hematol (1978); 1986; 28(5):257-67. PubMed ID: 3543838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A 3D-LDA study of the relation between wall shear stress and intimal thickness in a human aortic bifurcation.
    Hayashi K; Yanai Y; Naiki T
    J Biomech Eng; 1996 Aug; 118(3):273-9. PubMed ID: 8872247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis.
    Walker AM; Johnston CR; Rival DE
    Ann Biomed Eng; 2014 Jan; 42(1):97-109. PubMed ID: 23975383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flow visualization and 1- and 3-D laser-Doppler-anemometer measurements in models of human carotid arteries.
    Liepsch D; Pflugbeil G; Matsuo T; Lesniak B
    Clin Hemorheol Microcirc; 1998 Apr; 18(1):1-30. PubMed ID: 9653582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.