These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6487838)

  • 1. Influence of anionic surface-active agents on the uptake of heavy metals by water hyacinth (Eichhornia crassipes).
    Muramoto S; Oki Y
    Bull Environ Contam Toxicol; 1984 Oct; 33(4):444-50. PubMed ID: 6487838
    [No Abstract]   [Full Text] [Related]  

  • 2. Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes).
    Muramoto S; Oki Y
    Bull Environ Contam Toxicol; 1983 Feb; 30(2):170-7. PubMed ID: 6839042
    [No Abstract]   [Full Text] [Related]  

  • 3. Bioaccumulation and detection of trace levels of cadmium in aquatic systems by Eichhornia crassipes.
    Wolverton BC; McDonald RC
    Environ Health Perspect; 1978 Dec; 27():161-4. PubMed ID: 738234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-absorption of Ni and Cd on Eichhornia crassipes root thin film.
    Elfeky SA; Imam H; Alsherbini AA
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):8220-6. PubMed ID: 23702568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system.
    El-Gendy AS; Biswas N; Bewtra JK
    Water Environ Res; 2006 Sep; 78(9):951-64. PubMed ID: 17120455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation and depuration of metals by duckweed (Lemna perpusilla).
    Clark JR; VanHassel JH; Nicholson RB; Cherry DS; Cairns J
    Ecotoxicol Environ Saf; 1981 Mar; 5(1):87-96. PubMed ID: 7472257
    [No Abstract]   [Full Text] [Related]  

  • 7. Copper, cadmium, and nickel accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada.
    Bagatto G; Alikhan MA
    Bull Environ Contam Toxicol; 1987 Mar; 38(3):540-5. PubMed ID: 3814880
    [No Abstract]   [Full Text] [Related]  

  • 8. Cytogenetic effects of cadmium accumulation on water hyacinth (Eichhornia crassipes).
    Rosas I; Carbajal ME; Gómez-Arroyo S; Belmont R; Villalobos-Pietrini R
    Environ Res; 1984 Apr; 33(2):386-95. PubMed ID: 6714190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing heavy metal-laden water hyacinth biomass in vermicomposting.
    Tereshchenko NN; Akimova EE; Pisarchuk AD; Yunusova TV; Minaeva OM
    Environ Sci Pollut Res Int; 2015 May; 22(9):7147-54. PubMed ID: 25501861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and physiological influence of the absorption of nutrients and toxic elements by Eichhornia crassipes.
    Martins DF; de Fátima Vitória de Moura M; Bezerra Loiola MI; Di Souza L; Barbosa E Silva KM; Francismar de Medeiros J
    J Environ Monit; 2011 Feb; 13(2):274-9. PubMed ID: 21165485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sandy beach molluscs as possible bioindicators of metal pollution 2. Laboratory studies.
    Watling HR; Watling RJ
    Bull Environ Contam Toxicol; 1983 Sep; 31(3):339-43. PubMed ID: 6626759
    [No Abstract]   [Full Text] [Related]  

  • 12. Heavy metals content in water, water hyacinth and sediments of Lalbagh tank, Bangalore (India).
    Lokeshwari H; Chandrappa GT
    J Environ Sci Eng; 2006 Jul; 48(3):183-8. PubMed ID: 17915781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of heavy metals removal from municipal landfill leachate using living biomass of water hyacinth.
    el-Gendy AS
    Int J Phytoremediation; 2008; 10(1):14-30. PubMed ID: 18709929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.).
    Abou-Shanab RA; Angle JS; van Berkum P
    Int J Phytoremediation; 2007; 9(2):91-105. PubMed ID: 18246718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum).
    Wang TC; Weissman JC; Ramesh G; Varadarajan R; Benemann JR
    Bull Environ Contam Toxicol; 1996 Nov; 57(5):779-86. PubMed ID: 8791554
    [No Abstract]   [Full Text] [Related]  

  • 16. Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland.
    Samecka-Cymerman A; Kempers AJ
    Ecotoxicol Environ Saf; 1996 Dec; 35(3):242-7. PubMed ID: 9007000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive sorption of heavy metals by water hyacinth roots.
    Zheng JC; Liu HQ; Feng HM; Li WW; Lam MH; Lam PK; Yu HQ
    Environ Pollut; 2016 Dec; 219():837-845. PubMed ID: 27521292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water hyacinth (Eichornia crassipes) as a natural tool for pollution control.
    Shetty US; Sonwane KD; Shashikant RK
    Ann Chim; 2005; 95(9-10):721-5. PubMed ID: 16342745
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of synthetic surfactants on the uptake of Pd, Cd and Pb by the marine macroalga, Ulva lactuca.
    Masakorala K; Turner A; Brown MT
    Environ Pollut; 2008 Dec; 156(3):897-904. PubMed ID: 18635296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.