BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6488521)

  • 1. Determination of enzyme activity in biological fluids by means of electrochemical oxidation of NADH at a modified glassy carbon electrode.
    Bartalits L; Nagy G; Pungor E
    Clin Chem; 1984 Nov; 30(11):1780-3. PubMed ID: 6488521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic detection of NADH and glycerol by NAD(+)-modified carbon electrodes.
    Alvarez-González MI; Saidman SB; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P
    Anal Chem; 2000 Feb; 72(3):520-7. PubMed ID: 10695137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotubule modified glassy carbon electrodes.
    Valentini F; Salis A; Curulli A; Palleschi G
    Anal Chem; 2004 Jun; 76(11):3244-8. PubMed ID: 15167808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes.
    Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T
    Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltammetric determination of lactate dehydrogenase using a carbon paste electrode.
    Tarmure C; Săndulescu R; Ionescu C
    J Pharm Biomed Anal; 2000 Mar; 22(2):355-61. PubMed ID: 10719919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalysis of NADH oxidation using electrochemically activated fluphenazine on carbon nanotube electrode.
    Sobczak A; Rębiś T; Milczarek G
    Bioelectrochemistry; 2015 Dec; 106(Pt B):308-15. PubMed ID: 26211441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.
    Pérez B; Del Valle M; Alegret S; Merkoçi A
    Talanta; 2007 Dec; 74(3):398-404. PubMed ID: 18371655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioluminescent assay of lactate dehydrogenase and its isoenzyme-1 activity.
    Pråhl MS; Karp MT; Lövgren TN
    J Appl Biochem; 1984; 6(5-6):325-35. PubMed ID: 6536646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electropolymerized poly(Toluidine blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis.
    Hasebe Y; Wang Y; Fukuoka K
    J Environ Sci (China); 2011; 23(6):1050-6. PubMed ID: 22066231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 6-Vinyl coenzyme Q0: Electropolymerization and electrocatalysis of NADH oxidation exploiting poly-p-quinone-modified electrode surfaces.
    Li Y; Shi L; Ma W; Li DW; Kraatz HB; Long YT
    Bioelectrochemistry; 2011 Feb; 80(2):128-31. PubMed ID: 20678972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. New approach for dehydrogenase based biosensors.
    Serban S; El Murr N
    Biosens Bioelectron; 2004 Sep; 20(2):161-6. PubMed ID: 15308217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrocatalytic oxidation of NADH in a flow injection analysis system using a poly-hematoxylin modified glassy carbon electrode.
    Dilgin DG; Gligor D; Gökçel HI; Dursun Z; Dilgin Y
    Biosens Bioelectron; 2010 Oct; 26(2):411-7. PubMed ID: 20739173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes.
    Guo K; Qian K; Zhang S; Kong J; Yu C; Liu B
    Talanta; 2011 Aug; 85(2):1174-9. PubMed ID: 21726755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetracyanoquinodimethane-mediated flow injection analysis electrochemical sensor for NADH coupled with dehydrogenase enzymes.
    Pandey PC
    Anal Biochem; 1994 Sep; 221(2):392-6. PubMed ID: 7810883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low potential detection of NADH based on Fe₃O₄ nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor.
    Teymourian H; Salimi A; Hallaj R
    Biosens Bioelectron; 2012 Mar; 33(1):60-8. PubMed ID: 22230696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive sensor for detection of NADH based on catalytic growth of Au nanoparticles on glassy carbon electrode.
    Tang L; Zeng G; Shen G; Zhang Y; Li Y; Fan C; Liu C; Niu C
    Anal Bioanal Chem; 2009 Mar; 393(6-7):1677-84. PubMed ID: 19099239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.
    Zhou M; Shang L; Li B; Huang L; Dong S
    Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical behavior of an antiviral drug acyclovir at fullerene-C(60)-modified glassy carbon electrode.
    Shetti NP; Malode SJ; Nandibewoor ST
    Bioelectrochemistry; 2012 Dec; 88():76-83. PubMed ID: 22796504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor.
    Yang DW; Liu HH
    Biosens Bioelectron; 2009 Dec; 25(4):733-8. PubMed ID: 19740647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.