These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6490326)

  • 1. 'Regulation' of capillary haematocrit.
    Gaehtgens P
    Int J Microcirc Clin Exp; 1984; 3(2):147-60. PubMed ID: 6490326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of flow and red cell flux in the microcirculation.
    Gaehtgens P
    Scand J Clin Lab Invest Suppl; 1981; 156():83-7. PubMed ID: 7034151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase in capillary blood flow and relative haematocrit in rabbit skeletal muscle following acute normovolaemic anaemia.
    Lindbom L; Mirhashemi S; Intaglietta M; Arfors KE
    Acta Physiol Scand; 1988 Dec; 134(4):503-12. PubMed ID: 3250219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of regional myocardial oxygen supply in the left ventricle. An experimental study in the in situ working canine heart.
    Eliasen P
    Dan Med Bull; 1987 Dec; 34(6):277-89. PubMed ID: 3325232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of microvascular estimates of capillary blood flow with direct measurements of total striated muscle flow.
    Duling BR; Sarelius IH; Jackson WF
    Int J Microcirc Clin Exp; 1982; 1(4):409-24. PubMed ID: 6765284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haematocrit distribution in rabbit tenuissimus muscle.
    Ley K; Lindbom L; Arfors KE
    Acta Physiol Scand; 1988 Mar; 132(3):373-83. PubMed ID: 3227880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model experiments on the effect of bifurcations on capillary blood flow and oxygen transport.
    Gaehtgens P; Pries A; Albrecht KH
    Pflugers Arch; 1979 Jun; 380(2):115-20. PubMed ID: 573438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of changes in hematocrit on red cell flows at capillary bifurcations.
    Vicaut E; Trouve R; Stücker O; Duruble M; Duvelleroy M
    Int J Microcirc Clin Exp; 1985; 4(4):351-61. PubMed ID: 4086190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock formation and non-linear dispersion in a microvascular capillary network.
    Pop SR; Richardson G; Waters SL; Jensen OE
    Math Med Biol; 2007 Dec; 24(4):379-400. PubMed ID: 17947254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of blood coagulability and axial streaming of erythrocytes in determining F cells-value and TPR.
    Tanos B
    Acta Physiol Acad Sci Hung; 1979; 53(1):1-7. PubMed ID: 495119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks.
    Ebrahimi S; Bagchi P
    J R Soc Interface; 2022 Aug; 19(193):20220306. PubMed ID: 35946164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvascular hematocrit and red cell flow in resting and contracting striated muscle.
    Klitzman B; Duling BR
    Am J Physiol; 1979 Oct; 237(4):H481-90. PubMed ID: 495734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation.
    Schmid-Schönbein H
    Int Rev Physiol; 1976; 9():1-62. PubMed ID: 977248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of muscle metabolism and muscle blood flow in capillary units during contraction.
    Murrant CL; Sarelius IH
    Acta Physiol Scand; 2000 Apr; 168(4):531-41. PubMed ID: 10759590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal profile of rat skeletal muscle capillary haemodynamics during recovery from contractions.
    Ferreira LF; Padilla DJ; Musch TI; Poole DC
    J Physiol; 2006 Jun; 573(Pt 3):787-97. PubMed ID: 16581868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of vessel diameter on red cell distribution at microvascular bifurcations.
    Carr RT; Wickham LL
    Microvasc Res; 1991 Mar; 41(2):184-96. PubMed ID: 2051959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of erythrocyte motion in filtration tests and in vivo flow.
    Cokelet GR
    Scand J Clin Lab Invest Suppl; 1981; 156():77-82. PubMed ID: 6948404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary flow impairment and functional capillary density.
    Tsai AG; Friesenecker B; Intaglietta M
    Int J Microcirc Clin Exp; 1995; 15(5):238-43. PubMed ID: 8852621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of cerebral capillary hematocrit on red cell flow separation at bifurcations: a computer simulation study.
    Hudetz AG
    Adv Exp Med Biol; 1990; 277():31-4. PubMed ID: 2096637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.