These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6490327)

  • 1. Flow behaviour of rigid red blood cells in the microcirculation.
    Driessen GK; Fischer TM; Haest CW; Inhoffen W; Schmid-Schönbein H
    Int J Microcirc Clin Exp; 1984; 3(2):197-210. PubMed ID: 6490327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary resistance to flow of hardened (diamide treated)red blood cells (RBC).
    Driessen GK; Scheidt-Bleichert H; Sobota A; Inhoffen W; Heidtmann H; Haest CW; Kamp D; Schmid-Schönbein H
    Pflugers Arch; 1982 Jan; 392(3):261-7. PubMed ID: 7070956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of reduced red cell "deformability" on flow velocity in capillaries of rat mesentery.
    Driessen GK; Haest CW; Heidtmann H; Kamp D; Schmid-Schönbein H
    Pflugers Arch; 1980 Oct; 388(1):75-8. PubMed ID: 7192392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Microcirculation; 1996 Mar; 3(1):49-57. PubMed ID: 8846271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of micro- and macrocirculation of the isolated rat mesentery preparation.
    Driessen G; Scheidt H; Heidtmann H; Inhoffen W; Schmid-Schönbein H
    Microcirc Endothelium Lymphatics; 1985; 2(5):551-74. PubMed ID: 3836354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red blood cell mechanics and functional capillary density.
    Secomb TW; Hsu R
    Int J Microcirc Clin Exp; 1995; 15(5):250-254. PubMed ID: 8852623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and rheological factors contributing to sickle cell microvascular occlusion.
    Kurantsin-Mills J; Lessin LS
    Blood Cells; 1986; 12(1):249-70. PubMed ID: 3790735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance.
    Tateishi N; Suzuki Y; Soutani M; Maeda N
    J Biomech; 1994 Sep; 27(9):1119-25. PubMed ID: 7929461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of RBC deformation and velocity in capillaries in vivo.
    Jeong JH; Sugii Y; Minamiyama M; Okamoto K
    Microvasc Res; 2006 May; 71(3):212-7. PubMed ID: 16624342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A quantitative observation of erythrocyte flow dynamics in microvessels of isolated rabbit mesentery].
    Soutani M
    Nihon Seirigaku Zasshi; 1994; 56(6):181-95. PubMed ID: 8078034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows.
    Forsyth AM; Wan J; Ristenpart WD; Stone HA
    Microvasc Res; 2010 Jul; 80(1):37-43. PubMed ID: 20303993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of human red blood cell deformability using a single micropore on a thin Si3N4 film.
    Ogura E; Abatti PJ; Moriizumi T
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):721-6. PubMed ID: 1937504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Int J Microcirc Clin Exp; 1996; 16(4):187-94. PubMed ID: 8923151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hemodilution and hemoconcentration on red cell flow velocity in the capillaries of the rat mesentery.
    Driessen GK; Heidtmann H; Schmid-Schönbein H
    Pflugers Arch; 1979 May; 380(1):1-6. PubMed ID: 572033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular resistance and transit time of sickle red blood cells.
    Vargas FF; Blackshear GL
    Blood Cells; 1982; 8(1):139-45. PubMed ID: 7115971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic photometric quantification of stiffness and relaxation time of red blood cells in a flow chamber.
    Artmann GM
    Biorheology; 1995; 32(5):553-70. PubMed ID: 8541524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is red cell deformability?
    Schmid-Schönbein H; Gaehtgens P
    Scand J Clin Lab Invest Suppl; 1981; 156():13-26. PubMed ID: 6948373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow dynamics of human sickle erythrocytes in the mesenteric microcirculation of the exchange-transfused rat.
    Kurantsin-Mills J; Jacobs HM; Klug PP; Lessin LS
    Microvasc Res; 1987 Sep; 34(2):152-67. PubMed ID: 3670112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.