These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6491048)

  • 1. Intelligibility ratings of continuous discourse: application to hearing aid selection.
    Cox RM; McDaniel DM
    J Acoust Soc Am; 1984 Sep; 76(3):758-66. PubMed ID: 6491048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the speech intelligibility rating (SIR) test for hearing aid comparisons.
    McDaniel DM; Cox RM
    J Speech Hear Res; 1992 Jun; 35(3):686-93. PubMed ID: 1608261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual effects of noise reduction with respect to personal preference, speech intelligibility, and listening effort.
    Brons I; Houben R; Dreschler WA
    Ear Hear; 2013; 34(1):29-41. PubMed ID: 22874643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of interferer facing orientation on speech perception by normal-hearing and hearing-impaired listeners.
    Strelcyk O; Pentony S; Kalluri S; Edwards B
    J Acoust Soc Am; 2014 Mar; 135(3):1419-32. PubMed ID: 24606279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Noise Reduction on Speech Intelligibility, Response Times to Speech, and Perceived Listening Effort in Normal-Hearing Listeners.
    van den Tillaart-Haverkate M; de Ronde-Brons I; Dreschler WA; Houben R
    Trends Hear; 2017; 21():2331216517716844. PubMed ID: 28656807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.
    Völker C; Warzybok A; Ernst SM
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefits of Acoustic Beamforming for Solving the Cocktail Party Problem.
    Kidd G; Mason CR; Best V; Swaminathan J
    Trends Hear; 2015 Jun; 19():. PubMed ID: 26126896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of slow-acting wide dynamic range compression on measures of intelligibility and ratings of speech quality in simulated-loss listeners.
    Rosengard PS; Payton KL; Braida LD
    J Speech Lang Hear Res; 2005 Jun; 48(3):702-14. PubMed ID: 16197282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Listener-assessed intelligibility of hearing aid-processed speech.
    Punch JL; Howard MT
    J Am Aud Soc; 1978; 4(2):69-76. PubMed ID: 738919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression.
    Arehart K; Souza P; Kates J; Lunner T; Pedersen MS
    Ear Hear; 2015; 36(5):505-16. PubMed ID: 25985016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Talker- and language-specific effects on speech intelligibility in noise assessed with bilingual talkers: Which language is more robust against noise and reverberation?
    Hochmuth S; Jürgens T; Brand T; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():23-34. PubMed ID: 26486466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of transient noise reduction algorithms on speech intelligibility and ratings of hearing aid users.
    DiGiovanni JJ; Davlin EA; Nagaraj NK
    Am J Audiol; 2011 Dec; 20(2):140-50. PubMed ID: 21940982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining perceived sound quality in a simulated hearing aid using the international speech test signal.
    Arehart KH; Kates JM; Anderson MC; Moats P
    Ear Hear; 2011; 32(4):533-5. PubMed ID: 21325947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of three hearing aid fittings using the Speech Intelligibility Rating (SIR) Test.
    Surr RK; Fabry DA
    Ear Hear; 1991 Feb; 12(1):32-8. PubMed ID: 2026286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech intelligibility in background noise with ideal binary time-frequency masking.
    Wang D; Kjems U; Pedersen MS; Boldt JB; Lunner T
    J Acoust Soc Am; 2009 Apr; 125(4):2336-47. PubMed ID: 19354408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of noise, nonlinear processing, and linear filtering on perceived speech quality.
    Arehart KH; Kates JM; Anderson MC
    Ear Hear; 2010 Jun; 31(3):420-36. PubMed ID: 20440116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the Speech Intelligibility Rating (SIR) test for hearing aid comparisons.
    Cox RM; McDaniel DM
    J Speech Hear Res; 1989 Jun; 32(2):347-52. PubMed ID: 2739387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.