These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 6491254)

  • 1. Scanning electron microscopy and X-ray microprobe analysis in detection of acetylcholinesterase in cultured embryonal carcinoma cells.
    Rechardt L; Lehtinen S; Wartiovaara J
    J Histochem Cytochem; 1984 Nov; 32(11):1154-8. PubMed ID: 6491254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microanalysis of the reaction product in Karnovsky and Roots histochemical localization of acetylcholinesterase.
    Tewari JP; Sehgal SS; Malhotra SK
    J Histochem Cytochem; 1982 May; 30(5):436-40. PubMed ID: 7077074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of laminin and fibronectin in endodermal and neural differentiation of F9 embryonal carcinoma cells.
    Wartiovaara J; Liesi P; Rechardt L
    Prog Clin Biol Res; 1984; 151():233-47. PubMed ID: 6473367
    [No Abstract]   [Full Text] [Related]  

  • 4. Thiocholine methods for the demonstration of acetylcholinesterase in neuromuscular junctions.
    Sehgal SS; Tewari JP; Malhotra SK
    Cytobios; 1981; 30(118):69-82. PubMed ID: 7273852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modification of thiocholine-ferricyanide method of Karnovsky and Roots for localization of acetylcholinesterase activity without interference by Koelle's copper thiocholine iodide precipitate.
    Tsuji S; Larabi Y
    Histochemistry; 1983; 78(3):317-23. PubMed ID: 6193086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal differentiation in F9 embryonal carcinoma cells.
    Wartiovaara J; Liesi P; Rechardt L
    Cell Differ; 1984 Dec; 15(2-4):125-8. PubMed ID: 6100170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Junction formation in aggregated embryonal carcinoma cells.
    Strum JM; Kartha S; Felix JS
    Dev Biol; 1984 Sep; 105(1):93-101. PubMed ID: 6534383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Acetylcholinesterase in the glial elements of the cat spinal cord].
    Torskaia IV; Goloborod'ko VN
    Neirofiziologiia; 1977; 9(1):48-51. PubMed ID: 840329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of F9 embryonal carcinoma cell differentiation by inhibition of polyamine synthesis.
    Oredsson SM; Billgren M; Heby O
    Eur J Cell Biol; 1985 Sep; 38(2):335-43. PubMed ID: 3930245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular localization of the radioactive galactose incorporated into embryonal carcinoma cells.
    Kawamoto Y; Muramatsu T
    Cell Struct Funct; 1983 Mar; 8(1):85-7. PubMed ID: 6667513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assay of acetylcholinesterase activity and elemental composition in brain compartments by electron probe microanalysis.
    Pogorelov A; Budantsev A; Pogorelova V; Mizin I
    Brain Res Brain Res Protoc; 1997 Feb; 1(1):44-8. PubMed ID: 9385046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-surface changes during in vitro differentiation of pluripotent embryonal carcinoma cells.
    Muramatsu H; Hamada H; Noguchi S; Kamada Y; Muramatsu T
    Dev Biol; 1985 Aug; 110(2):284-96. PubMed ID: 3894113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron probe X-ray microanalysis of cultured myogenic C2C12 cells with scanning and scanning transmission electron microscopy.
    Tylko G; Karasiński J; Wróblewski R; Roomans GM; Kilarski WM
    Folia Histochem Cytobiol; 2000; 38(2):79-84. PubMed ID: 10833672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trophectodermal carcinoma: mouse teratocarcinoma-derived tumour stem cells differentiating into trophoblastic and yolk sac elements.
    Damjanov I; Damjanov A; Andrews PW
    J Embryol Exp Morphol; 1985 Apr; 86():125-41. PubMed ID: 4031736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decrease in the c-myb gene transcript during differentiation of mouse teratocarcinoma stem cells.
    Fukuda M; Ikuma S; Setoyama C; Shimada K
    Biochem Int; 1987 Jul; 15(1):73-9. PubMed ID: 2840075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histochemical demonstration of membrane-bound acetylcholinesterase: a methodological consideration on Koelle's copper thiocholine reaction and on Karnovsky's copper ferrocyanide reaction.
    Tsuji S
    Acta Histochem Suppl; 1986; 33():147-56. PubMed ID: 3090621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell surface markers to monitor the process of visceral endoderm differentiation from embryonal carcinoma cells: identification of the stage sensitive to high concentration of retinoic acid.
    Sato M; Ozawa M; Hamada H; Kasai M; Tokunaga T; Muramatsu T
    J Embryol Exp Morphol; 1985 Aug; 88():165-82. PubMed ID: 3908612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pulsed electromagnetic field on growth and differentiation of embryonal carcinoma cells.
    Akamine T; Muramatsu H; Hamada H; Sakou T
    J Cell Physiol; 1985 Aug; 124(2):247-54. PubMed ID: 3900096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered hormonal responses: markers for embryonal and embryonic carcinoma stem cells and their differentiated derivatives.
    Liapi C; Gerbaud P; Anderson WB; Brion DE
    J Cell Physiol; 1987 Nov; 133(2):405-8. PubMed ID: 3680397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic channels in a line of embryonal carcinoma cells induced to undergo neuronal differentiation.
    Ebihara L; Speers WC
    Biophys J; 1984 Dec; 46(6):827-30. PubMed ID: 6097319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.