BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 6491581)

  • 1. Role of transferrin in branching morphogenesis, growth and differentiation of the embryonic kidney.
    Thesleff I; Ekblom P
    J Embryol Exp Morphol; 1984 Aug; 82():147-61. PubMed ID: 6491581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of retinoids on tooth morphogenesis and cytodifferentiations, in vitro.
    Mark MP; Bloch-Zupan A; Ruch JV
    Int J Dev Biol; 1992 Dec; 36(4):517-26. PubMed ID: 1295562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of bud formation of embryonic mouse tracheal epithelium by fibroblast growth factor plus transferrin in mesenchyme-free culture.
    Ohtsuka N; Urase K; Momoi T; Nogawa H
    Dev Dyn; 2001 Oct; 222(2):263-72. PubMed ID: 11668603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stage- and region-dependent chondrogenesis and growth of chick wing-bud mesenchyme in serum-containing and defined tissue culture media.
    Paulsen DF; Chen WD; Pang L; Johnson B; Okello D
    Dev Dyn; 1994 May; 200(1):39-52. PubMed ID: 8081013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of kidney differentiation by soluble factors secreted by the embryonic liver and the yolk sac.
    Ekblom P; Thesleff I
    Dev Biol; 1985 Jul; 110(1):29-38. PubMed ID: 4007266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth factors and tooth development.
    Partanen AM; Thesleff I
    Int J Dev Biol; 1989 Mar; 33(1):165-72. PubMed ID: 2485697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions.
    Lin Y; Zhang S; Tuukkanen J; Peltoketo H; Pihlajaniemi T; Vainio S
    Int J Dev Biol; 2003 Feb; 47(1):3-13. PubMed ID: 12653247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney.
    Meyer TN; Schwesinger C; Bush KT; Stuart RO; Rose DW; Shah MM; Vaughn DA; Steer DL; Nigam SK
    Dev Biol; 2004 Nov; 275(1):44-67. PubMed ID: 15464572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of laminin binding integrins and laminin-5 in branching morphogenesis of the ureteric bud during kidney development.
    Zent R; Bush KT; Pohl ML; Quaranta V; Koshikawa N; Wang Z; Kreidberg JA; Sakurai H; Stuart RO; Nigám SK
    Dev Biol; 2001 Oct; 238(2):289-302. PubMed ID: 11784011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucocorticoids, TGF-beta, and embryonic mouse salivary gland morphogenesis.
    Jaskoll T; Choy HA; Melnick M
    J Craniofac Genet Dev Biol; 1994; 14(4):217-30. PubMed ID: 7883868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vegf as an epithelial cell morphogen modulates branching morphogenesis of embryonic kidney by directly acting on the ureteric bud.
    Marlier A; Schmidt-Ott KM; Gallagher AR; Barasch J; Karihaloo A
    Mech Dev; 2009; 126(3-4):91-8. PubMed ID: 19150651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic bombesin and insulin stimulation of DNA synthesis in human fetal kidney in serum-free culture.
    Brière N; Chailler P
    Biofactors; 1993 May; 4(2):133-7. PubMed ID: 8347276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferrin as a fetal growth factor: acquisition of responsiveness related to embryonic induction.
    Ekblom P; Thesleff I; Saxén L; Miettinen A; Timpl R
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2651-5. PubMed ID: 6405384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organogenesis in a defined medium supplemented with transferrin.
    Ekblom P; Thesleff I; Miettinen A; Saxén L
    Cell Differ; 1981 Nov; 10(5):281-8. PubMed ID: 7307079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa.
    Gao X; Chen X; Taglienti M; Rumballe B; Little MH; Kreidberg JA
    Development; 2005 Dec; 132(24):5437-49. PubMed ID: 16291795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimal growth factor requirements of human fetal kidney in serum- and glucose-free culture.
    Brière N; Chailler P
    Biofactors; 1992 Dec; 4(1):55-61. PubMed ID: 1363349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nerve growth factor (NGF) supports tooth morphogenesis in mouse first branchial arch explants.
    Amano O; Bringas P; Takahashi I; Takahashi K; Yamane A; Chai Y; Nuckolls GH; Shum L; Slavkin HC
    Dev Dyn; 1999 Nov; 216(3):299-310. PubMed ID: 10590481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of neuronal cells on kidney differentiation.
    Sariola H; Holm-Sainio K; Henke-Fahle S
    Int J Dev Biol; 1989 Mar; 33(1):149-55. PubMed ID: 2485695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of ureter branching as a response to Wnt-2b signaling during early kidney organogenesis.
    Lin Y; Liu A; Zhang S; Ruusunen T; Kreidberg JA; Peltoketo H; Drummond I; Vainio S
    Dev Dyn; 2001 Sep; 222(1):26-39. PubMed ID: 11507767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel role for the chemokine receptor Cxcr4 in kidney morphogenesis: an in vitro study.
    Ueland J; Yuan A; Marlier A; Gallagher AR; Karihaloo A
    Dev Dyn; 2009 May; 238(5):1083-91. PubMed ID: 19384956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.