These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6491589)

  • 41. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.
    Knuth ST; Dave H; Peters JR; Fitts RH
    J Physiol; 2006 Sep; 575(Pt 3):887-99. PubMed ID: 16809373
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Maximum velocity of shortening of three fibre types from horse soleus muscle: implications for scaling with body size.
    Rome LC; Sosnicki AA; Goble DO
    J Physiol; 1990 Dec; 431():173-85. PubMed ID: 2100306
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres.
    Mutungi G; Ranatunga KW
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):253-65. PubMed ID: 9490847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis.
    Stienen GJ; Zaremba R; Elzinga G
    J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):109-22. PubMed ID: 7730976
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of temperature on muscle velocity and sustained performance in swimming carp.
    Rome LC; Funke RP; Alexander RM
    J Exp Biol; 1990 Nov; 154():163-78. PubMed ID: 2277258
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres.
    Julian FJ
    J Physiol; 1971 Oct; 218(1):117-45. PubMed ID: 5316143
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endothermic force generation in skinned cardiac muscle from rat.
    Ranatunga KW
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):489-96. PubMed ID: 10555067
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism underlying double-hyperbolic force-velocity relation in vertebrate skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1993; 332():667-76; discussion 676-8. PubMed ID: 8109377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lion (Panthera leo) and caracal (Caracal caracal) type IIx single muscle fibre force and power exceed that of trained humans.
    Kohn TA; Noakes TD
    J Exp Biol; 2013 Mar; 216(Pt 6):960-9. PubMed ID: 23155088
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate.
    Cooke R; Franks K; Luciani GB; Pate E
    J Physiol; 1988 Jan; 395():77-97. PubMed ID: 2842489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stable isotope analysis reveals ontogenetic feeding shifts in Pacific blue marlin (Makaira nigricans) off eastern Taiwan.
    Chang CT; Chiang WC; Chang YC; Musyl MK; Sun CL; Madigan DJ; Carlisle AB; Hsu HH; Chang QX; Su NJ; Ho YS; Tseng CT
    J Fish Biol; 2019 Jun; 94(6):958-965. PubMed ID: 30671958
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variation in the determinants of power of chemically skinned type I rat soleus muscle fibres.
    Gilliver SF; Jones DA; Rittweger J; Degens H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Apr; 197(4):311-9. PubMed ID: 21120505
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Variation in the determinants of power of chemically skinned human muscle fibres.
    Gilliver SF; Degens H; Rittweger J; Sargeant AJ; Jones DA
    Exp Physiol; 2009 Oct; 94(10):1070-8. PubMed ID: 19638363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of force and shortening velocity by calcium and myosin phosphorylation in chemically skinned smooth muscle.
    Malmqvist U; Arner A
    Pflugers Arch; 1996; 433(1-2):42-8. PubMed ID: 9019729
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasticity of muscle contractile properties following temperature acclimation in the marine fish Myoxocephalus scorpius.
    Beddow T; Johnston I
    J Exp Biol; 1995; 198(Pt 1):193-201. PubMed ID: 9317617
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of oxidation on the power of chemically skinned rat soleus fibres.
    Gilliver SF; Jones DA; Rittweger J; Degens H
    J Musculoskelet Neuronal Interact; 2010 Dec; 10(4):267-73. PubMed ID: 21116063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shortening velocity extrapolated to zero load and unloaded shortening velocity of whole rat skeletal muscle.
    Claflin DR; Faulkner JA
    J Physiol; 1985 Feb; 359():357-63. PubMed ID: 3999042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Very low force-generating ability and unusually high temperature dependency in hummingbird flight muscle fibers.
    Reiser PJ; Welch KC; Suarez RK; Altshuler DL
    J Exp Biol; 2013 Jun; 216(Pt 12):2247-56. PubMed ID: 23580719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal dependence of isotonic contractile properties of skeletal muscle and sprint performance of the lizard Dipsosaurus dorsalis.
    Marsh RL; Bennett AF
    J Comp Physiol B; 1985; 155(5):541-51. PubMed ID: 3837028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time.
    Daniels M; Noble MI; ter Keurs HE; Wohlfart B
    J Physiol; 1984 Oct; 355():367-81. PubMed ID: 6491996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.