BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6491657)

  • 21. Release of gamma-[3H]aminobutyric acid from rat olfactory bulb and substantia nigra: differential modulation by glutamic acid.
    Jaffé EH; Vaello ML
    J Neurochem; 1989 Jun; 52(6):1766-74. PubMed ID: 2566648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurochemical evidence for a neuronal GABAergic system in the rat sympathetic superior cervical ganglion.
    González Burgos G; Rosenstein RE; Cardinali DP
    J Neural Transm Gen Sect; 1992; 89(1-2):27-40. PubMed ID: 1358123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects of triethyllead on synaptosomal [3H]dopamine vs. [3H]acetylcholine and [3H]gamma-aminobutyric acid release.
    Minnema DJ; Cooper GP; Schamer MM
    Neurotoxicol Teratol; 1991; 13(3):257-65. PubMed ID: 1653396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induced release of gamma-aminobutyric acid by a carrier-mediated, high-affinity uptake of L-glutamate in cultured chick retina cells.
    do Nascimento JL; de Mello FG
    J Neurochem; 1985 Dec; 45(6):1820-7. PubMed ID: 2865335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopamine inhibits calcium-independent gamma-[3H]aminobutyric acid release induced by kainate and high K+ in the fish retina.
    Kato S; Negishi K; Teranishi T
    J Neurochem; 1985 Mar; 44(3):893-9. PubMed ID: 3882885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutamate receptor agonists release [3H]GABA preferentially from horizontal cells.
    Moran J; Pasantes-Morales H; Redburn DA
    Brain Res; 1986 Nov; 398(2):276-87. PubMed ID: 2879608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycine stimulates calcium-independent release of 3H-GABA from isolated retinas of Xenopus laevis.
    Smiley JF; Basinger SF
    Vis Neurosci; 1990 Apr; 4(4):337-48. PubMed ID: 1980204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Presynaptic mechanisms underlying the gamma-aminobutyric acid-evoked receptor-independent release of [3H]norepinephrine in rat hippocampus.
    Bonanno G; Fontana G; Fedele E; Robino G; Raiteri M
    J Neurochem; 1989 Jun; 52(6):1854-8. PubMed ID: 2542451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for two independent mechanisms of GABA release induced by veratridine and glutamate in monolayer cultures of chick embryo retinal cells.
    do-Nascimento JL; Ventura AL; Paes-de-Carvalho R
    Braz J Med Biol Res; 1992; 25(4):379-83. PubMed ID: 1364145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Release of D-[3H]aspartate and [14C]GABA in rat hippocampus slices: effects of fatty acid-free bovine serum albumin and Ca2+ withdrawal.
    Minc-Golomb D; Eimerl S; Levy Y; Schramm M
    Brain Res; 1988 Aug; 457(2):205-11. PubMed ID: 3219550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of somatostatin-14 on the in vitro release of [3H]GABA from slices of rat caudatoputamen.
    Meyer DK; Conzelmann U; Schultheiss K
    Neuroscience; 1989; 28(1):61-8. PubMed ID: 2569696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Release of [3H]- and endogenous GABA from slices of the rat medulla oblongata: modification by 3-mercaptopropionic acid, nipecotic acid and diaminobutyric acid.
    Kihara M; Amano H; Misu Y; Kubo T
    Arch Int Pharmacodyn Ther; 1989; 298():50-60. PubMed ID: 2757467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Release of D-[3H]aspartic acid from the rat striatum. Effect of veratridine-evoked depolarization, fronto-parietal cortex ablation, and striatal lesions with kainic acid.
    Arqueros L; Abarca J; Bustos G
    Biochem Pharmacol; 1985 Apr; 34(8):1217-24. PubMed ID: 2581579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation of gamma-[3H]aminobutyric acid release from cultured mouse cerebral cortex neurons by sulphur-containing excitatory amino acid transmitter candidates: receptor activation mediates two distinct mechanisms of release.
    Dunlop J; Grieve A; Schousboe A; Griffiths R
    J Neurochem; 1991 Oct; 57(4):1388-97. PubMed ID: 1680165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of GABAergic neurons in cerebellar primary cultures and selective neurotoxic effects of a serum fraction.
    Aloisi F; Ciotti MT; Levi G
    J Neurosci; 1985 Aug; 5(8):2001-8. PubMed ID: 3894593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maitotoxin-evoked gamma-aminobutyric acid release is due not only to the opening of calcium channels.
    Pin JP; Yasumoto T; Bockaert J
    J Neurochem; 1988 Apr; 50(4):1227-32. PubMed ID: 2450172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potassium-stimulated release of GABA, glycine, and taurine from the chick retina.
    López-Colomé AM; Salceda R; Pasantes-Morales H
    Neurochem Res; 1978 Aug; 3(4):431-41. PubMed ID: 745657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of gamma-aminobutyric acid on skate retinal horizontal cells: evidence for an electrogenic uptake mechanism.
    Malchow RP; Ripps H
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8945-9. PubMed ID: 2247470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. gamma-Aminobutyric acid efflux from sympathetic glial cells: effect of 'depolarizing' agents.
    Bowery NG; Brown DA; Marsh S
    J Physiol; 1979 Aug; 293():75-101. PubMed ID: 501652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GABA release from Xenopus retina does not correlate with horizontal cell membrane potential.
    Cunningham JR; Neal MJ; Stone S; Witkovsky P
    Neuroscience; 1988 Jan; 24(1):39-48. PubMed ID: 2897092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.