These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 6491666)
1. Use of [3H]triphenylmethylphosphonium cation for estimating membrane potential in neuroblastoma cells. Milligan G; Strange PG J Neurochem; 1984 Dec; 43(6):1515-21. PubMed ID: 6491666 [TBL] [Abstract][Full Text] [Related]
2. Reduction in accumulation of [3H]triphenylmethylphosphonium cation in neuroblastoma cells caused by optical probes of membrane potential. Evidence for interactions between carbocyanine dyes and lipophilic anions. Milligan G; Strange PG Biochim Biophys Acta; 1983 Jul; 762(4):585-92. PubMed ID: 6871253 [TBL] [Abstract][Full Text] [Related]
3. Measurement of membrane potentials (psi) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation. Cheng K; Haspel HC; Vallano ML; Osotimehin B; Sonenberg M J Membr Biol; 1980 Oct; 56(3):191-201. PubMed ID: 6779011 [TBL] [Abstract][Full Text] [Related]
4. Effect of chromate ion on the membrane of established human cells as measured by uptake of a permeant lipophilic cation. Brun EC; White LR; Eik-Nes KB Toxicol Lett; 1987 Feb; 35(2-3):253-9. PubMed ID: 3824414 [TBL] [Abstract][Full Text] [Related]
5. [Active transport of triphenylmethylphosphonium in mitochondria]. Skul'skiĭ IA; Glazunov VV; Baklanova SM Biofizika; 1982; 27(3):480-4. PubMed ID: 7093333 [TBL] [Abstract][Full Text] [Related]
6. Measurement of the membrane potential of isolated nerve terminals by the lipophilic cation [3H]triphenylmethylphosphonium bromide. Hansson E; Jacobson I; Venema R; Sellström A J Neurochem; 1980 Mar; 34(3):569-73. PubMed ID: 7354332 [No Abstract] [Full Text] [Related]
7. [Erroneous use of lipophilic phosphonic cations for determining mitochondrial membrane potential]. Skul'skiĭ IA; Glazunov VV Tsitologiia; 1981 Apr; 23(4):458-60. PubMed ID: 7256848 [TBL] [Abstract][Full Text] [Related]
8. Triphenylmethylphosphonium cation distribution as a measure of hormone-induced alterations in white adipocyte membrane potential. Vallano ML; Sonenberg M J Membr Biol; 1982; 68(1):57-66. PubMed ID: 6286974 [TBL] [Abstract][Full Text] [Related]
9. Triphenylmethylphosphonium (TPMP+) as a probe for peritubular membrane potential in the kidney slice. Goldinger JM; Duffey ME; Hong SK Proc Soc Exp Biol Med; 1983 Jun; 173(2):281-7. PubMed ID: 6867006 [TBL] [Abstract][Full Text] [Related]
10. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Lichtshtein D; Kaback HR; Blume AJ Proc Natl Acad Sci U S A; 1979 Feb; 76(2):650-4. PubMed ID: 284390 [TBL] [Abstract][Full Text] [Related]
11. [The role of hyperpolarization and depolarization of the membrane of the human spermatozoon]. Salazar EL; Macías H; Calzada L Ginecol Obstet Mex; 1991 Oct; 59():308-12. PubMed ID: 1752449 [TBL] [Abstract][Full Text] [Related]
12. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. Rottenberg H J Membr Biol; 1984; 81(2):127-38. PubMed ID: 6492133 [TBL] [Abstract][Full Text] [Related]
14. Use of 11C-triphenylmethylphosphonium for the evaluation of membrane potential in the heart by positron-emission tomography. Fukuda H; Syrota A; Charbonneau P; Vallois J; Crouzel M; Prenant C; Sastre J; Crouzel C Eur J Nucl Med; 1986; 11(12):478-83. PubMed ID: 3488216 [TBL] [Abstract][Full Text] [Related]
15. The reaction site of a non-competitive antagonist in the delta-subunit of the nicotinic acetylcholine receptor. Oberthür W; Muhn P; Baumann H; Lottspeich F; Wittmann-Liebold B; Hucho F EMBO J; 1986 Aug; 5(8):1815-9. PubMed ID: 3758027 [TBL] [Abstract][Full Text] [Related]
16. Hyperpolarization/depolarization on human spermatozoa. Calzada L; Salazar EL; Macias H Arch Androl; 1991; 26(2):71-8. PubMed ID: 2036051 [TBL] [Abstract][Full Text] [Related]
17. Cation effluxes associated with the uptake of TPP+, TPA+, and TPMP+ by Neurospora: evidence for a predominantly electroneutral influx process. Slayman CL; Kuroda H; Ballarin-Denti A Biochim Biophys Acta; 1994 Feb; 1190(1):57-71. PubMed ID: 8110821 [TBL] [Abstract][Full Text] [Related]
18. Resting membrane potential in 41A3 mouse neuroblastoma cells. Effect of increased glucose and galactose concentrations. Yorek MA; Dunlap JA Biochim Biophys Acta; 1991 Jan; 1061(1):1-8. PubMed ID: 1847297 [TBL] [Abstract][Full Text] [Related]
19. Binding of lipophilic cations to the liposomal membrane: thermodynamic analysis. Demura M; Kamo N; Kobatake Y Biochim Biophys Acta; 1987 Oct; 903(2):303-8. PubMed ID: 2820490 [TBL] [Abstract][Full Text] [Related]
20. Demonstration of a muscarinic receptor-mediated cyclic GMP-dependent hyperpolarization of the membrane potential of mouse neuroblastoma cells using [3H]tetraphenylphosphonium. Wastek GJ; Lopez JR; Richelson E Mol Pharmacol; 1981 Jan; 19(1):15-20. PubMed ID: 6259508 [No Abstract] [Full Text] [Related] [Next] [New Search]