These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6493033)

  • 1. Three-dimensional distribution of mineral in bone at a resolution of 15 micron determined by x-ray microtomography.
    Elliott JC; Dover SD
    Metab Bone Dis Relat Res; 1984; 5(5):219-21. PubMed ID: 6493033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray microscopy using computerized axial tomography.
    Elliott JC; Dover SD
    J Microsc; 1985 Jun; 138(Pt 3):329-31. PubMed ID: 4032470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray microtomography of bones and teeth.
    Davis GR; Wong FS
    Physiol Meas; 1996 Aug; 17(3):121-46. PubMed ID: 8870055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray microtomography.
    Elliott JC; Dover SD
    J Microsc; 1982 May; 126(Pt 2):211-3. PubMed ID: 7086891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High spatial resolution imaging of bone mineral using computed microtomography. Comparison with microradiography and undecalcified histologic sections.
    Engelke K; Graeff W; Meiss L; Hahn M; Delling G
    Invest Radiol; 1993 Apr; 28(4):341-9. PubMed ID: 7683009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography.
    Nuzzo S; Peyrin F; Cloetens P; Baruchel J; Boivin G
    Med Phys; 2002 Nov; 29(11):2672-81. PubMed ID: 12462734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of bone mineralization using computed tomography.
    Rüegsegger P; Elsasser U; Anliker M; Gnehm H; Kind H; Prader A
    Radiology; 1976 Oct; 121(1):93-7. PubMed ID: 959563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Computerized tomography determination of bone mineral content in quantitative diagnosis of osteoporosis].
    Banzer D; Felsenberg D
    Orthopade; 1989 Feb; 18(1):12-7. PubMed ID: 2704552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mineralization of bone tissue: a forgotten dimension in osteoporosis research.
    Boivin G; Meunier PJ
    Osteoporos Int; 2003; 14 Suppl 3():S19-24. PubMed ID: 12730799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroCT examination of human bone specimens: effects of polymethylmethacrylate embedding on structural parameters.
    Perilli E; Baruffaldi F; Visentin M; Bordini B; Traina F; Cappello A; Viceconti M
    J Microsc; 2007 Feb; 225(Pt 2):192-200. PubMed ID: 17359254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray microtomography: nondestructive three-dimensional imaging for in vitro endodontic studies.
    Dowker SE; Davis GR; Elliott JC
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 1997 Apr; 83(4):510-6. PubMed ID: 9127387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography.
    Boivin G; Meunier PJ
    Calcif Tissue Int; 2002 Jun; 70(6):503-11. PubMed ID: 12019458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D computed X-ray tomography of human cancellous bone at 8 microns spatial and 10(-4) energy resolution.
    Bonse U; Busch F; Günnewig O; Beckmann F; Pahl R; Delling G; Hahn M; Graeff W
    Bone Miner; 1994 Apr; 25(1):25-38. PubMed ID: 8061549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Age changes in the mineralization of the human femur according to quantitative microradiographic data].
    Pavlova MN; Peliakov AN
    Arkh Anat Gistol Embriol; 1971 Jul; 61(7):83-8. PubMed ID: 5158445
    [No Abstract]   [Full Text] [Related]  

  • 15. Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT.
    Hesse B; Varga P; Langer M; Pacureanu A; Schrof S; Männicke N; Suhonen H; Maurer P; Cloetens P; Peyrin F; Raum K
    J Bone Miner Res; 2015 Feb; 30(2):346-56. PubMed ID: 25130720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porosity of human mandibular condylar bone.
    Renders GA; Mulder L; van Ruijven LJ; van Eijden TM
    J Anat; 2007 Mar; 210(3):239-48. PubMed ID: 17331174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Microradiographic aspects of bone in the aged].
    Magnani GC
    Ann Radiol Diagn (Bologna); 1969 Sep; 42(6):482-94. PubMed ID: 5397418
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of vertebral and peripheral mineral losses in disuse osteoporosis in monkeys.
    Cann CE; Genant HK; Young DR
    Radiology; 1980 Feb; 134(2):525-9. PubMed ID: 6766220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative study of bone mineral densities in the human skeleton].
    Eschberger J; Schmidt A; Hartenstein H
    Acta Med Austriaca; 1977; 4(4-9):138-40. PubMed ID: 610336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypophosphatemic vitamin D resistant rickets (phosphate diabetes): bone mineral problems studied by 125I-computed tomography and microradiography.
    Exner GU; Prader A; Elsasser U; Rüegsegger P; Anliker M; Steendijk R
    Helv Paediatr Acta; 1980 Mar; 35(1):39-49. PubMed ID: 6250997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.