BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 6493157)

  • 21. Alteration in pyruvate metabolism in the liver of tumor-bearing rats.
    Shearer JD; Buzby GP; Mullen JL; Miller E; Caldwell MD
    Cancer Res; 1984 Oct; 44(10):4443-6. PubMed ID: 6467203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competition between sodium reabsorption and gluconeogenesis in kidneys of steroid-treated rats.
    Silva P; Ross B; Spokes K
    Am J Physiol; 1980 Apr; 238(4):F290-5. PubMed ID: 7377301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hormones and non-specific humoral factors in the interferences between sodium, glucose and phosphate handling by dog kidney.
    Nizet A; Lefebvre P; Luyckx A; Crabbé J
    Curr Probl Clin Biochem; 1976; 6():262-71. PubMed ID: 793782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycerol and lactate induce reciprocal changes in glucose formation and glutamine production in isolated rabbit kidney-cortex tubules incubated with aspartate.
    Lietz T; Bryła J
    Arch Biochem Biophys; 1995 Aug; 321(2):501-9. PubMed ID: 7646077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of lactate glucogneogenesis in rat kidney by dichloroacetate.
    Lacey JH; Randle PJ
    Biochem J; 1978 Mar; 170(3):551-60. PubMed ID: 646800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control mechanisms of energy-dependent metabolic pathways in hepatocytes.
    Tager JM; Wanders RJ; Groen AK; van der Meer R; Akerboom TP; Meijer AJ
    Acta Biol Med Ger; 1981; 40(7-8):895-906. PubMed ID: 7036612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the oxidation rates of glucose and lactate in relation to support of Na+ reabsorption.
    Cohen JJ; Gregg CM; Merkens LS; Brand PH; Garza-Quintero R; Pashley DH; Black AJ
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():418-23. PubMed ID: 616375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zonation of gluconeogenesis from lactate and pyruvate in the rat liver studied by means of anterograde and retrograde bivascular perfusion.
    Bracht A; Constantin J; Ishii-Iwamoto EL; Suzuki-Kemmelmeier F
    Biochim Biophys Acta; 1994 Apr; 1199(3):298-304. PubMed ID: 8161569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Respiratory and metabolic responses of fetal and neonatal perfused livers to catecholamines and anoxia.
    Kaneoka T; Taguchi S; Shimizu H; Shirakawa K
    Nihon Sanka Fujinka Gakkai Zasshi; 1988 May; 40(5):627-34. PubMed ID: 3385281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca2+ dependence of gluconeogenesis stimulation by glucagon at different cytosolic NAD(+)-NADH redox potentials.
    Marques-da-Silva AC; D'Avila RB; Ferrari AG; Kelmer-Bracht AM; Constantin J; Yamamoto NS; Bracht A
    Braz J Med Biol Res; 1997 Jul; 30(7):827-36. PubMed ID: 9361705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A possible role of the glycerol phosphate cycle in cyclic AMP-stimulated gluconeogenesis from lactate in perfused rat livers.
    Müllhofer G; Loy E
    Hoppe Seylers Z Physiol Chem; 1974 Mar; 355(3):239-54. PubMed ID: 4373377
    [No Abstract]   [Full Text] [Related]  

  • 32. The effects of cyclopropane carboxylate on hepatic pyruvate metabolism.
    Steinhelper ME; Olson MS
    Arch Biochem Biophys; 1985 Nov; 243(1):80-91. PubMed ID: 3933432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific alpha 1-, alpha 2-, and beta-responses to norepinephrine in pyruvate-perfused rat kidneys.
    Baines AD; Ho P
    Am J Physiol; 1987 Jan; 252(1 Pt 2):F170-6. PubMed ID: 3028153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of gluconeogenesis in liver. 3. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3',5'-monophosphate on gluconeogenic intermediates in the perfused rat liver.
    Exton JH; Park CR
    J Biol Chem; 1969 Mar; 244(6):1424-33. PubMed ID: 4304225
    [No Abstract]   [Full Text] [Related]  

  • 35. Combined effect of lysine and acetate on gluconeogenesis from lactate in isolated hepatocytes.
    Kümmel L
    Physiol Bohemoslov; 1983; 32(1):80-4. PubMed ID: 6405415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca2(+)-fatty acid interaction in the control of hepatic gluconeogenesis.
    González-Manchón C; Menaya J; Ayuso MS; Parrilla R
    Biochim Biophys Acta; 1990 Mar; 1051(3):215-20. PubMed ID: 2310772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross-linked hemoglobin increases fractional reabsorption and GFR in hypoxic isolated perfused rat kidneys.
    Baines AD; Christoff B; Wicks D; Wiffen D; Pliura D
    Am J Physiol; 1995 Nov; 269(5 Pt 2):F628-36. PubMed ID: 7503228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbohydrate metabolism in the isolated perfused rat kidney.
    Hems DA; Gaja G
    Biochem J; 1972 Jun; 128(2):421-6. PubMed ID: 5084798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural stimulation of gluconeogenesis in isolated pyruvate-perfused rat kidneys.
    Baines AD; Drangova R; Ho P
    Can J Physiol Pharmacol; 1988 Feb; 66(2):106-11. PubMed ID: 3370541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of extramitochondrial reducing power in gluconeogenesis.
    Krebs HA; Gascoyne T; Notton BM
    Biochem J; 1967 Jan; 102(1):275-82. PubMed ID: 4291560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.