These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6493441)

  • 1. Influence of intermittent hypoxia and pyrimidinic nucleosides on cerebral enzymatic activities related to energy transduction.
    Dagani F; Marzatico F; Curti D; Taglietti M; Zanada F; Benzi G
    Neurochem Res; 1984 Aug; 9(8):1085-99. PubMed ID: 6493441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain enzyme adaptation to mild normobaric intermittent hypoxia.
    Marzatico F; Curti D; Dagani F; Taglietti M; Benzi G
    J Neurosci Res; 1986; 16(2):419-28. PubMed ID: 3761387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of prolonged and intermittent hypoxia on some cerebral enzymatic activities related to energy transduction.
    Dagani F; Marzatico F; Curti D; Zanada F; Benzi G
    J Cereb Blood Flow Metab; 1984 Dec; 4(4):615-24. PubMed ID: 6501447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenobarbital and 6-aminonicotinamide effect on cerebral enzymatic activities related to energy metabolism in different rat brain areas.
    Marzatico F; Dagani F; Curti D; Benzi G
    Neurochem Res; 1987 Jan; 12(1):33-9. PubMed ID: 3033530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Ca2+-homopantothenate and mild hypoxia on some enzyme activities evaluated in subcellular fractions from different rat brain regions.
    Dagani F; Curti D; Marzatico F
    Mol Chem Neuropathol; 1989 Jun; 10(3):157-69. PubMed ID: 2548516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the skeletal muscle energy metabolism induced by intermittent normobaric hypoxia and treatment with biological pyrimidines.
    Pastoris O; Gorini A; Vercesi L; Taglietti M; Dossena M
    Farmaco Sci; 1985 Jun; 40(6):442-53. PubMed ID: 4029389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of superoxide dismutase in rat brain.
    Thomas TN; Priest DG; Zemp JW
    J Neurochem; 1976 Jul; 27(1):309-10. PubMed ID: 956839
    [No Abstract]   [Full Text] [Related]  

  • 8. The regional and subcellular distribution of catechol-O-methyl transferase in the rat brain.
    Broch OJ; Fonnum F
    J Neurochem; 1972 Sep; 19(9):2049-55. PubMed ID: 4403687
    [No Abstract]   [Full Text] [Related]  

  • 9. Differences in the distribution of energy-metabolizing enzymes in rat brain regions.
    Valenzuela A; Pla A; BolaƱos MJ; Villanueva E
    Rev Esp Fisiol; 1987 Mar; 43(1):101-5. PubMed ID: 3616104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional distribution and developmental change of tryptophan hydroxylase activity in rat brain.
    Deguchi T; Barchas J
    J Neurochem; 1972 Mar; 19(3):927-9. PubMed ID: 5030997
    [No Abstract]   [Full Text] [Related]  

  • 11. Activities of the mitochondrial NAD-linked isocitric dehydrogenase in different regions of the rat brain: changes in ageing and the effect of chronic manganese chloride administration.
    Lai JC; Leung TK; Lim L
    Gerontology; 1982; 28(2):81-5. PubMed ID: 7084680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ischemia and pharmacological treatment on subcellular fractions from neonatal rat brain.
    Curti D; Marzatico F; Dagani F; Villa R; Benzi G
    Farmaco Sci; 1982 Apr; 37(4):275-82. PubMed ID: 6282622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional distribution of glutamic acid decarboxylase in the developing brain of the pyridoxine-deficient rat.
    Bayoumi RA; Smith WR
    J Neurochem; 1973 Sep; 21(3):603-13. PubMed ID: 4742140
    [No Abstract]   [Full Text] [Related]  

  • 14. Prolidase activity in rat brain; developmental, regional and subcellular distribution.
    Hui KS; Lajtha A
    Brain Res; 1978 Sep; 153(1):79-85. PubMed ID: 209877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat brain L-3,4-dihydroxyphenylalanine and L-5-hydroxytryptophan decarboxylase activities: differential effect of 6-hydroxydopamine.
    Sims KL; Bloom FE
    Brain Res; 1973 Jan; 49(1):165-75. PubMed ID: 4540548
    [No Abstract]   [Full Text] [Related]  

  • 16. Tissue fractionation in rat brain, kidney and liver. I. Intracellular localization of a 5-methyltetrahydrofolic acid requiring enzyme.
    Laduron PM; Verwimp MF; Janssen PF; Gommeren WR
    Biochimie; 1975; 57(2):253-60. PubMed ID: 166705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DOPA decarboxylase in the developing rat brain.
    Lamprecht F; Coyle JT
    Brain Res; 1972 Jun; 41(2):503-6. PubMed ID: 4402608
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of starvation or streptozotocin-diabetes on phosphate-activated glutaminase of different rat brain regions.
    Lellos V; Moraitou M; Tselentis V; Philippidis H; Palaiologos G
    Neurochem Res; 1992 Feb; 17(2):141-5. PubMed ID: 1538831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic hypoxia in development selectively alters the activities of key enzymes of glucose oxidative metabolism in brain regions.
    Lai JC; White BK; Buerstatte CR; Haddad GG; Novotny EJ; Behar KL
    Neurochem Res; 2003 Jun; 28(6):933-40. PubMed ID: 12718448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of phase shift on monoamine oxidase activity in different regions of the rat brain as a function of age.
    Bhaskaran D; Radha E
    J Gerontol; 1984 Jan; 39(1):22-9. PubMed ID: 6537814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.