These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6494489)

  • 1. Calculation on cosmic-ray muon exposure rate in non-walled concrete buildings.
    Fujitaka K; Abe S
    Radioisotopes; 1984 Jun; 33(6):350-6. PubMed ID: 6494489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of cosmic-ray muon exposure in building's interior.
    Fujitaka K; Abe S
    Radioisotopes; 1984 Jun; 33(6):343-9. PubMed ID: 6494488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STUDIES OF COSMIC-RAY MUONS AND NEUTRONS IN A FIVE-STORY CONCRETE BUILDING.
    Chen WL; Sheu RJ
    Radiat Prot Dosimetry; 2018 May; 179(3):233-243. PubMed ID: 29165652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of partition walls and neighboring buildings on the indoor exposure rate due to cosmic-ray muons.
    Fujitaka K; Abe S
    Health Phys; 1986 Nov; 51(5):647-59. PubMed ID: 3771226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equivalent dose rate by muons to the human body.
    Băcioiu I
    Radiat Prot Dosimetry; 2011 Nov; 147(3):380-5. PubMed ID: 21147787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cosmic-muon intensity measurement and overburden estimation in a building at surface level and in an underground facility using two BC408 scintillation detectors coincidence counting system.
    Zhang W; Ungar K; Liu C; Mailhot M
    J Environ Radioact; 2016 Oct; 162-163():340-346. PubMed ID: 27340860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement for the dose-rates of the cosmic-ray components on the ground.
    Rasolonjatovo DA; Suzuki H; Hirabayashi N; Nunomiya T; Nakamura T; Nakao N
    J Radiat Res; 2002 Dec; 43 Suppl():S27-33. PubMed ID: 12793726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose rate and flux density of cosmic muons estimated by TLD method.
    Kvasnicka J
    Health Phys; 1979 Apr; 36(4):521-4. PubMed ID: 478889
    [No Abstract]   [Full Text] [Related]  

  • 9. Dose reduction of scattered photons from concrete walls lined with lead: Implications for improvement in design of megavoltage radiation therapy facility mazes.
    Al-Affan IA; Hugtenburg RP; Bari DS; Al-Saleh WM; Piliero M; Evans S; Al-Hasan M; Al-Zughul B; Al-Kharouf S; Ghaith A
    Med Phys; 2015 Feb; 42(2):606-614. PubMed ID: 28102603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-physics modelling contributions to investigate the atmospheric cosmic rays on the single event upset sensitivity along the scaling trend of CMOS technologies.
    Hubert G; Regis D; Cheminet A; Gatti M; Lacoste V
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):290-4. PubMed ID: 24500239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere.
    Matthiä D; Sihver L; Meier M
    Radiat Prot Dosimetry; 2008; 131(2):222-8. PubMed ID: 18448435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure.
    Ferrari A; Pelliccioni M; Rancati T
    Radiat Prot Dosimetry; 2001; 93(2):101-14. PubMed ID: 11548333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muon dose distribution from a decaying pencil beam of pions.
    Brosing JW; Henkelman RM
    Phys Med Biol; 1981 Jul; 26(4):633-40. PubMed ID: 6789343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of cosmic ray particles to radiation environment at high mountain altitude: Comparison of Monte Carlo simulations with experimental data.
    Mishev AL
    J Environ Radioact; 2016 Mar; 153():15-22. PubMed ID: 26714058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes.
    Battistoni G; Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 112(3):331-43. PubMed ID: 15546896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo calculation of the radiation field at aircraft altitudes.
    Roesler S; Heinrich W; Schraube H
    Radiat Prot Dosimetry; 2002; 98(4):367-88. PubMed ID: 12120665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements with a Ge detector and Monte Carlo computations of dose rate yields due to cosmic muons.
    Clouvas A; Xanthos S; Antonopoulos-Domis M; Silva J
    Health Phys; 2003 Feb; 84(2):212-21. PubMed ID: 12553651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of PARMA: PHITS-based analytical radiation model in the atmosphere.
    Sato T; Yasuda H; Niita K; Endo A; Sihver L
    Radiat Res; 2008 Aug; 170(2):244-59. PubMed ID: 18666812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimate of doses to the fetus during commercial flights.
    Chen J; Mares V
    Health Phys; 2008 Oct; 95(4):407-12. PubMed ID: 18784513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypothesis: Muon Radiation Dose and Marine Megafaunal Extinction at the End-Pliocene Supernova.
    Melott AL; Marinho F; Paulucci L
    Astrobiology; 2019 Jun; 19(6):825-830. PubMed ID: 30481053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.