These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6494498)

  • 1. The effects of di- and trichloroacetic acid on sheep erythrocytes: an animal model with a glucose-6-phosphate dehydrogenase deficiency.
    Calabrese EJ; Leonard DA
    Regul Toxicol Pharmacol; 1984 Sep; 4(3):261-4. PubMed ID: 6494498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of the dorset sheep as a predictive animal model for the response of glucose-6-phosphate dehydrogenase-deficient human erythrocytes to a proposed systemic toxic ozone intermediate, methyl oleate ozonide.
    Calabrese EJ; Williams PS; Moore GS
    Ecotoxicol Environ Saf; 1983 Aug; 7(4):416-22. PubMed ID: 6617568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of the dorset sheep as a predictive animal model for the response of G-6-PD deficient human erythrocytes to a proposed systemic toxic ozone intermediate, methyl oleate hydroperoxide.
    Calabrese EJ; Moore GS; Williams PS
    Vet Hum Toxicol; 1983 Aug; 25(4):241-6. PubMed ID: 6623888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver.
    Herren-Freund SL; Pereira MA; Khoury MD; Olson G
    Toxicol Appl Pharmacol; 1987 Sep; 90(2):183-9. PubMed ID: 3629594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of methyl oleate hydroperoxide, a possible toxic ozone intermediate, on human normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Williams P; Calabrese EJ; Moore GS
    Ecotoxicol Environ Saf; 1983 Apr; 7(2):242-8. PubMed ID: 6851934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of in vivo ozone exposure to Dorset sheep, an animal model with low levels of erythrocyte glucose-6-phosphate dehydrogenase activity.
    Moore GS; Calabrese EJ; Schulz E
    J Environ Pathol Toxicol Oncol; 1984 Jul; 5(4-5):71-8. PubMed ID: 6520741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low erythrocyte glucose-6-phosphate dehydrogenase (g-6-PD) activity and susceptibility to nitrite-induced methemoglobin formation.
    Calabrese EJ; Moore GS; Ho SC
    Bull Environ Contam Toxicol; 1980 Dec; 25(6):837-40. PubMed ID: 7470659
    [No Abstract]   [Full Text] [Related]  

  • 8. Dichloroacetic acid and trichloroacetic acid-induced DNA strand breaks are independent of peroxisome proliferation.
    Nelson MA; Lansing AJ; Sanchez IM; Bull RJ; Springer DL
    Toxicology; 1989 Oct; 58(3):239-48. PubMed ID: 2799828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of in vivo ozone exposure to dorset sheep, an animal model with low levels of erythrocyte glucose-6-phosphate dehydrogenase activity.
    Moore GS; Calabrese EJ; Schulz E
    Bull Environ Contam Toxicol; 1981 Feb; 26(2):273-80. PubMed ID: 7248553
    [No Abstract]   [Full Text] [Related]  

  • 10. In vitro cytotoxicity of mono-, di-, and trichloroacetate and its modulation by hepatic peroxisome proliferation.
    Bruschi SA; Bull RJ
    Fundam Appl Toxicol; 1993 Oct; 21(3):366-75. PubMed ID: 8258390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte glucose-6-phosphate dehydrogenase and glutathione deficiency in sheep.
    Maronpot RR
    Can J Comp Med; 1972 Jan; 36(1):55-60. PubMed ID: 4258546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chlorinated acetates on the glutathione metabolism and on glycolysis of cultured astrocytes.
    Schmidt MM; Rohwedder A; Dringen R
    Neurotox Res; 2011 May; 19(4):628-37. PubMed ID: 20628842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chloroacetic acids on the kidneys.
    Davis ME
    Environ Health Perspect; 1986 Nov; 69():209-14. PubMed ID: 3816724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low erythrocyte glucose-6-phosphate dehydrogenase (G-6-PD) activity and susceptibility to carbaryl-induced methemoglobin formation and glutathione depletion.
    Calabrese EJ; Geiger CP
    Bull Environ Contam Toxicol; 1986 Apr; 36(4):506-9. PubMed ID: 3083896
    [No Abstract]   [Full Text] [Related]  

  • 15. Carcinogenic activity of dichloroacetic acid and trichloroacetic acid in the liver of female B6C3F1 mice.
    Pereira MA
    Fundam Appl Toxicol; 1996 Jun; 31(2):192-9. PubMed ID: 8789785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ascorbic acid on sodium nitrite-induced methemoglobin formation in glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Calabrese EJ; Moore GS; McCarthy MS
    Ecotoxicol Environ Saf; 1983 Aug; 7(4):410-5. PubMed ID: 6617567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chloroform on dichloroacetic acid and trichloroacetic acid-induced hypomethylation and expression of the c-myc gene and on their promotion of liver and kidney tumors in mice.
    Pereira MA; Kramer PM; Conran PB; Tao L
    Carcinogenesis; 2001 Sep; 22(9):1511-9. PubMed ID: 11532874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subacute toxicity of trichloroacetic acid in male and female rats.
    Davis ME
    Toxicology; 1990 Jul; 63(1):63-72. PubMed ID: 2382270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissimilar characteristics of N-methyl-N-nitrosourea-initiated foci and tumors promoted by dichloroacetic acid or trichloroacetic acid in the liver of female B6C3F1 mice.
    Latendresse JR; Pereira MA
    Toxicol Pathol; 1997; 25(5):433-40. PubMed ID: 9323830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ninety day toxicity study of chloroacetic acids in rats.
    Bhat HK; Kanz MF; Campbell GA; Ansari GA
    Fundam Appl Toxicol; 1991 Aug; 17(2):240-53. PubMed ID: 1765218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.