These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6496713)

  • 1. Differing luminal potential difference of cystic fibrosis and control sweat secretory coils in vitro.
    Sato K
    Am J Physiol; 1984 Oct; 247(4 Pt 2):R646-9. PubMed ID: 6496713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro.
    Sato K; Sato F
    J Clin Invest; 1984 Jun; 73(6):1763-71. PubMed ID: 6327771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transepithelial potential during strontium-induced spontaneous sweating.
    Sato K; Sato F
    Am J Physiol; 1982 May; 242(5):C360-5. PubMed ID: 7044137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cAMP activation of CF-affected Cl- conductance in both cell membranes of an absorptive epithelium.
    Reddy MM; Quinton PM
    J Membr Biol; 1992 Oct; 130(1):49-62. PubMed ID: 1281885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable reduction in beta-adrenergic sweat secretion in cystic fibrosis heterozygotes.
    Sato K; Sato F
    J Lab Clin Med; 1988 May; 111(5):511-8. PubMed ID: 2896223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic potentiation of isoproterenol-induced cAMP level in sweat gland.
    Sato K; Sato F
    Am J Physiol; 1983 Sep; 245(3):C189-95. PubMed ID: 6311023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cystic fibrosis affects specific cell type in sweat gland secretory coil.
    Reddy MM; Bell CL; Quinton PM
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C426-33. PubMed ID: 9277340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered electrical potential profile of human reabsorptive sweat duct cells in cystic fibrosis.
    Reddy MM; Quinton PM
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C722-6. PubMed ID: 2801922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sweat gland bioelectrics differ in cystic fibrosis: a new concept for potential diagnosis and assessment of CFTR function in cystic fibrosis.
    Gonska T; Ip W; Turner D; Han WS; Rose J; Durie P; Quinton P
    Thorax; 2009 Nov; 64(11):932-8. PubMed ID: 19734129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonisotonicity of simian eccrine primary sweat induced in vitro.
    Sato K; Sato F
    Am J Physiol; 1987 Jun; 252(6 Pt 2):R1099-105. PubMed ID: 3296789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of VIP on sweat secretion and cAMP accumulation in isolated simian eccrine glands.
    Sato K; Sato F
    Am J Physiol; 1987 Dec; 253(6 Pt 2):R935-41. PubMed ID: 2827508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K+ efflux from the monkey eccrine secretory coil during the transient of stimulation with agonists.
    Saga K; Sato F; Sato K
    J Physiol; 1988 Nov; 405():205-17. PubMed ID: 3151370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iontophoretic beta-adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo.
    Shamsuddin AK; Reddy MM; Quinton PM
    Exp Physiol; 2008 Aug; 93(8):969-81. PubMed ID: 18441335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simplified cyclic adenosine monophosphate-mediated sweat rate test for quantitative measure of cystic fibrosis transmembrane regulator (CFTR) function.
    Callen A; Diener-West M; Zeitlin PL; Rubenstein RC
    J Pediatr; 2000 Dec; 137(6):849-55. PubMed ID: 11113843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiologically distinct cell types in human sweat gland secretory coil.
    Reddy MM; Quinton PM
    Am J Physiol; 1992 Feb; 262(2 Pt 1):C287-92. PubMed ID: 1539620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis.
    Cotton CU; Stutts MJ; Knowles MR; Gatzy JT; Boucher RC
    J Clin Invest; 1987 Jan; 79(1):80-5. PubMed ID: 3793933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Cl- permeability in normal and cystic fibrosis sweat duct cells.
    Ram SJ; Weaver ML; Kirk KL
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C842-6. PubMed ID: 2240198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct demonstration of high transepithelial chloride-conductance in normal human sweat duct which is absent in cystic fibrosis.
    Bijman J; Frömter E
    Pflugers Arch; 1986; 407 Suppl 2():S123-7. PubMed ID: 3822760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of Cl- conductance in normal and Cl- impermeability in cystic fibrosis sweat duct epithelium.
    Reddy MM; Quinton PM
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C727-35. PubMed ID: 2478027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mislocalization of delta F508 CFTR in cystic fibrosis sweat gland.
    Kartner N; Augustinas O; Jensen TJ; Naismith AL; Riordan JR
    Nat Genet; 1992 Aug; 1(5):321-7. PubMed ID: 1284548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.