These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 6497880)

  • 1. Inactivation of human blood coagulation factor X by chemical modification of gamma-carboxyglutamic acid residues.
    Sherrill GB; Straight DL; Hiskey RG; Roberts HR; Griffith MJ
    Biochem Biophys Res Commun; 1984 Oct; 124(1):256-61. PubMed ID: 6497880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of chemically modified protein S: effect of the conversion of gamma-carboxyglutamic acid to gamma-methyleneglutamic acid on functional properties.
    Walker FJ
    Biochemistry; 1986 Oct; 25(20):6305-11. PubMed ID: 2947625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional characteristics of activated human factor IX after chemical modification of gamma-carboxyglutamic acid residues.
    Straight DL; Sherrill GB; Noyes CM; Trapp HG; Wright SF; Roberts HR; Hiskey RG; Griffith MJ
    J Biol Chem; 1985 Mar; 260(5):2890-3. PubMed ID: 3871774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of decarboxyfactor X by a protein from Russell's viper venom. Purification and partial characterization of activated decarboxyfactor X.
    Lindhout MJ; Kop-Klaassen BH; Hemker HC
    Biochim Biophys Acta; 1978 Apr; 533(2):327-41. PubMed ID: 417734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the Gla domain in the activation of bovine coagulation factor X by the snake venom protein XCP.
    Skogen WF; Bushong DS; Johnson AE; Cox AC
    Biochem Biophys Res Commun; 1983 Feb; 111(1):14-20. PubMed ID: 6830586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium enhances factor Xa activity independent of gamma-carboxyglutamic acid residues.
    Sherrill GB; Meade JB; Kalayanamit T; Monroe DM; Church FC
    Thromb Res; 1988 Oct; 52(1):53-60. PubMed ID: 3201396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-terminal sequences of blood coagulation factor X1 and X2 light chains. Mass-spectrometric identification of twelve residues of gamma-carboxyglutamic acid in their vitamin K-dependent domains.
    Thøgersen HC; Petersen TE; Sottrup-Jensen L; Magnusson S; Morris HR
    Biochem J; 1978 Nov; 175(2):613-27. PubMed ID: 743214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of gamma-carboxyglutamic acid in calcified tissues.
    King K
    Biochim Biophys Acta; 1978 Sep; 542(3):542-6. PubMed ID: 581180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of the appearance of gamma-carboxyglutamic acid with the onset of mineralization in developing endochondral bone.
    Hauschka PV; Reddi AH
    Biochem Biophys Res Commun; 1980 Feb; 92(3):1037-41. PubMed ID: 7362598
    [No Abstract]   [Full Text] [Related]  

  • 10. Specific tritium labeling of gamma-carboxyglutamic acid residues in proteins.
    Price PA
    Methods Enzymol; 1984; 107():544-8. PubMed ID: 6390093
    [No Abstract]   [Full Text] [Related]  

  • 11. Specific tritium incorporation into gamma-carboxyglutamic acid in proteins. The pH dependence of gamma-proton exchange.
    Price PA; Williamson MK; Epstein DJ
    J Biol Chem; 1981 Feb; 256(3):1172-6. PubMed ID: 7005230
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of oxytetracycline and some related antibiotics upon the gamma-carboxy-glutamic acid level in bone and kidney cortex.
    Deyl Z; Vancíková O; Macek K
    Biochem Biophys Res Commun; 1981 May; 100(1):79-85. PubMed ID: 7259762
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction between gamma-carboxyglutamic acid and glutamate dehydrogenase.
    Federici G; Ricci G; Matarese RM; Spoto G; Dupré S; Cavallini D
    Arch Biochem Biophys; 1979 Aug; 196(1):304-6. PubMed ID: 507814
    [No Abstract]   [Full Text] [Related]  

  • 14. Purification and characterization of a coagulant protein from the venom of Russell's viper.
    Furukawa Y; Matsunaga Y; Hayashi K
    Biochim Biophys Acta; 1976 Nov; 453(1):48-61. PubMed ID: 11825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The small molecular weight, gamma-carboxyglutamic acid-containing protein of rabbit bone tissue.
    Triffitt JT; Wilson JM
    Arch Oral Biol; 1984; 29(12):1015-21. PubMed ID: 6598360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-affinity calcium-binding site in the gama-carboxyglutamic acid domain of bovine factor VII.
    Inoue K; Shimada H; Ueba J; Enomoto S; Tanaka-Saisaka Y; Kubota T; Koyama M; Morita T
    Biochemistry; 1996 Oct; 35(43):13826-32. PubMed ID: 8901525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coagulation factor X-binding protein from Deinagkistrodon acutus venom is a Gla domain-binding protein.
    Atoda H; Ishikawa M; Mizuno H; Morita T
    Biochemistry; 1998 Dec; 37(50):17361-70. PubMed ID: 9860851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for several gamma-carboxyglutamic acid-containing proteins in dentin.
    Linde A; Bhown M; Cothran WC; Höglund A; Butler WT
    Biochim Biophys Acta; 1982 Jun; 704(2):235-9. PubMed ID: 7104368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased inhibitory activity of prothrombin to calcium oxalate crystallization by specific chemical modification of its gamma-carboxyglutamic acid residues.
    Liu J; Wang T; Chen J; Wang S; Ye Z
    Urology; 2006 Jan; 67(1):201-3. PubMed ID: 16413375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of vitamin K in protein modification].
    Ryńca J
    Postepy Biochem; 1985; 31(2):283-304. PubMed ID: 2869478
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.