These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6498185)

  • 1. Kinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation.
    Plagemann PG; Wohlhueter RM
    Biochim Biophys Acta; 1984 Nov; 778(1):176-84. PubMed ID: 6498185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleoside transport in human erythrocytes. A simple carrier with directional symmetry in fresh cells, but with directional asymmetry in cells from outdated blood.
    Jarvis SM; Hammond JR; Paterson AR; Clanachan AS
    Biochem J; 1983 Feb; 210(2):457-61. PubMed ID: 6860305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleoside transport in human erythrocytes. A simple carrier with directional symmetry and differential mobility of loaded and empty carrier.
    Plagemann PG; Wohlhueter RM; Erbe J
    J Biol Chem; 1982 Oct; 257(20):12069-74. PubMed ID: 7118930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature on kinetics and differential mobility of empty and loaded nucleoside transporter of human erythrocytes.
    Plagemann PG; Wohlhueter RM
    J Biol Chem; 1984 Jul; 259(14):9024-7. PubMed ID: 6746637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temperature on the transport of nucleosides in guinea pig erythrocytes.
    Jarvis SM; Martin BW
    Can J Physiol Pharmacol; 1986 Feb; 64(2):193-8. PubMed ID: 3697835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleoside transporter of pig erythrocytes. Kinetic properties, isolation and reaction with nitrobenzylthioinosine and dipyridamole.
    Woffendin C; Plagemann PG
    Biochim Biophys Acta; 1987 Sep; 903(1):18-30. PubMed ID: 3651452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility of nucleoside transporter of human erythrocytes differs greatly when loaded with different nucleosides.
    Plagemann PG; Aran JM; Wohlhueter RM; Woffendin C
    Biochim Biophys Acta; 1990 Feb; 1022(1):103-9. PubMed ID: 2302397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte nucleoside transport: asymmetrical binding of nitrobenzylthioinosine to nucleoside permeation sites.
    Jarvis SM; McBride D; Young JD
    J Physiol; 1982 Mar; 324():31-46. PubMed ID: 7097603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C.
    Wheeler TJ
    Biochim Biophys Acta; 1986 Nov; 862(2):387-98. PubMed ID: 3778899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uridine transport in human erythrocytes: data from normal subjects and from patients with renal failure.
    Fervenza FC; Meredith D; Ellory JC; Hendry BM
    Exp Physiol; 1991 Jan; 76(1):53-8. PubMed ID: 2015074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trans-stimulation and trans-inhibition of uridine efflux from human erythrocytes by permeant nucleosides.
    Jarvis SM
    Biochem J; 1986 Jan; 233(1):295-7. PubMed ID: 3954730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hypoxanthine transporter of Novikoff rat hepatoma cells exhibits directional symmetry and equal mobility when empty or substrate-loaded.
    Plagemann PG; Wohlhueter RM
    Biochim Biophys Acta; 1982 Jun; 688(2):505-14. PubMed ID: 7104338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benzodiazepine inhibition of nucleoside transport in human erythrocytes.
    Hammond JR; Jarvis SM; Paterson AR; Clanachan AS
    Biochem Pharmacol; 1983 Apr; 32(7):1229-35. PubMed ID: 6847712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na- and Cl-dependent glycine transport in human red blood cells and ghosts. A study of the binding of substrates to the outward-facing carrier.
    King PA; Gunn RB
    J Gen Physiol; 1989 Feb; 93(2):321-42. PubMed ID: 2703819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the functional symmetry of nucleoside transport in mammalian cells.
    Wohlhueter RM; Plagemann PG
    Biochim Biophys Acta; 1982 Jul; 689(2):249-60. PubMed ID: 7115709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transport of chloroquine across human erythrocyte membranes is mediated by a simple symmetric carrier.
    Yayon A; Ginsburg H
    Biochim Biophys Acta; 1982 Apr; 686(2):197-203. PubMed ID: 7082662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic analysis of L-tryptophan transport in human red blood cells.
    Rosenberg R
    Biochim Biophys Acta; 1981 Dec; 649(2):262-8. PubMed ID: 7317397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleoside translocation in sheep reticulocytes and fetal erythrocytes: a proposed model for the nucleoside transporter.
    Jarvis SM; Young JD
    J Physiol; 1982 Mar; 324():47-66. PubMed ID: 6284922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.