These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6498508)

  • 1. Midbrain stimulation inhibits tail-flick only at currents sufficient to excite rostral medullary neurons.
    Vanegas H; Barbaro NM; Fields HL
    Brain Res; 1984 Oct; 321(1):127-33. PubMed ID: 6498508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of inhibition of a spinal nociceptive reflex by stimulation medially and laterally in the midbrain and medulla in the pentobarbital-anesthetized rat.
    Sandkühler J; Gebhart GF
    Brain Res; 1984 Jul; 305(1):67-76. PubMed ID: 6744062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission.
    Moreau JL; Fields HL
    Brain Res; 1986 Nov; 397(1):37-46. PubMed ID: 3801864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centrifugal modulation of the rat tail flick reflex evoked by graded noxious heating of the tail.
    Ness TJ; Gebhart GF
    Brain Res; 1986 Oct; 386(1-2):41-52. PubMed ID: 3779419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray.
    Heinricher MM; Cheng ZF; Fields HL
    J Neurosci; 1987 Jan; 7(1):271-8. PubMed ID: 3806198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat.
    Sandkühler J; Gebhart GF
    Brain Res; 1984 Jul; 305(1):77-87. PubMed ID: 6744063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventrolateral orbital cortex and periaqueductal gray stimulation-induced effects on on- and off-cells in the rostral ventromedial medulla in the rat.
    Hutchison WD; Harfa L; Dostrovsky JO
    Neuroscience; 1996 Jan; 70(2):391-407. PubMed ID: 8848148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the antinociceptive effect of morphine and glutamate at coincidental sites in the periaqueductal gray and medial medulla in rats.
    Jensen TS; Yaksh TL
    Brain Res; 1989 Jan; 476(1):1-9. PubMed ID: 2563331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Putative nociceptive modulatory neurons in the dorsolateral pontomesencephalic reticular formation.
    Haws CM; Williamson AM; Fields HL
    Brain Res; 1989 Apr; 483(2):272-82. PubMed ID: 2706520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomy and physiology of a nociceptive modulatory system.
    Fields HL; Heinricher MM
    Philos Trans R Soc Lond B Biol Sci; 1985 Feb; 308(1136):361-74. PubMed ID: 2858889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kappa opioids inhibit physiologically identified medullary pain modulating neurons and reduce morphine antinociception.
    Meng ID; Johansen JP; Harasawa I; Fields HL
    J Neurophysiol; 2005 Mar; 93(3):1138-44. PubMed ID: 15456805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative comparison of inhibition of visceral and cutaneous spinal nociceptive transmission from the midbrain and medulla in the rat.
    Ness TJ; Gebhart GF
    J Neurophysiol; 1987 Oct; 58(4):850-65. PubMed ID: 2824712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine microinjected into the periaqueductal gray has differential effects on 3 classes of medullary neurons.
    Cheng ZF; Fields HL; Heinricher MM
    Brain Res; 1986 Jun; 375(1):57-65. PubMed ID: 3719359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraperiaqueductal gray glycine and D-serine exert dual effects on rostral ventromedial medulla ON- and OFF-cell activity and thermoceptive threshold in the rat.
    Palazzo E; Guida F; Migliozzi A; Gatta L; Marabese I; Luongo L; Rossi C; de Novellis V; Fernández-Sánchez E; Soukupova M; Zafra F; Maione S
    J Neurophysiol; 2009 Dec; 102(6):3169-79. PubMed ID: 19776366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Off" and "on" cells of the medulla oblongata as possible mediators of analgesia produced by mesencephalic and diencephalic stimulation in rats.
    Tortorici V; Vanegas H
    Acta Cient Venez; 1990; 41(5-6):317-26. PubMed ID: 2152328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tail-flick related activity in medullospinal neurons.
    Vanegas H; Barbaro NM; Fields HL
    Brain Res; 1984 Oct; 321(1):135-41. PubMed ID: 6498509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat.
    Fields HL; Bry J; Hentall I; Zorman G
    J Neurosci; 1983 Dec; 3(12):2545-52. PubMed ID: 6317812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostaglandin E2 in the midbrain periaqueductal gray produces hyperalgesia and activates pain-modulating circuitry in the rostral ventromedial medulla.
    Heinricher MM; Martenson ME; Neubert MJ
    Pain; 2004 Jul; 110(1-2):419-26. PubMed ID: 15275794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pronociception from the dorsomedial nucleus of the hypothalamus is mediated by the rostral ventromedial medulla in healthy controls but is absent in arthritic animals.
    Pinto-Ribeiro F; Amorim D; David-Pereira A; Monteiro AM; Costa P; Pertovaara A; Almeida A
    Brain Res Bull; 2013 Oct; 99():100-8. PubMed ID: 24121166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putative pain modulating neurons in the rostral ventral medulla: reflex-related activity predicts effects of morphine.
    Barbaro NM; Heinricher MM; Fields HL
    Brain Res; 1986 Feb; 366(1-2):203-10. PubMed ID: 3697678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.