BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6498514)

  • 1. Veratridine-induced release of acetylcholine from mouse forebrain minces: dependence on the hydrolysis of cytoplasmic acetylcholine for a source of choline.
    Carroll PT
    Brain Res; 1984 Oct; 321(1):55-62. PubMed ID: 6498514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depolarization of mouse forebrain minces with veratridine and high K+: failure to stimulate the Ca2+ independent, spontaneous release of acetylcholine from the cytoplasm due to hydrolysis of the acetylcholine stored there.
    Carroll PT; Benishin CG
    Brain Res; 1984 Jan; 291(2):261-72. PubMed ID: 6697191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Veratridine-induced breakdown of cytosolic acetylcholine in rat hippocampal minces: an intraterminal form of acetylcholinesterase or choline O-acetyltransferase?
    Carroll PT; Badamchian M; Craig P; Lyness WH
    Brain Res; 1986 Sep; 383(1-2):83-99. PubMed ID: 3768708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the acetylcholine transport blocker 2-(4-phenylpiperidino) cyclohexanol (AH5183) on the subcellular storage and release of acetylcholine in mouse brain.
    Carroll PT
    Brain Res; 1985 Dec; 358(1-2):200-9. PubMed ID: 4075114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of 2-(4-phenylpiperidino)cyclohexanol (AH 5183) on the veratridine-induced increase in acetylcholine synthesis by rat hippocampal tissue.
    Carroll PT; Ivy MT
    J Neurochem; 1988 Sep; 51(3):808-19. PubMed ID: 3411328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemicholinium-3 and related ether analogues on the synthesis of acetylcholine by mouse brain (in vitro).
    Bove FC; Haarstad VB
    Arch Int Pharmacodyn Ther; 1981 Oct; 253(2):278-93. PubMed ID: 7325764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Veratridine-induced activation of choline-O-acetyltransferase activity in rat hippocampal tissue: relationship to the veratridine-induced release of acetylcholine.
    Carroll PT
    Brain Res; 1987 Jun; 414(2):401-4. PubMed ID: 3113664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precursor dependence of acetylcholine release from rat brain in vitro.
    Millington WR; Goldberg AM
    Brain Res; 1982 Jul; 243(2):263-70. PubMed ID: 7104738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices.
    Cunningham J; Neal MJ
    Br J Pharmacol; 1981 Jul; 73(3):655-67. PubMed ID: 6166344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro.
    Blaustein MP
    J Physiol; 1975 Jun; 247(3):617-55. PubMed ID: 238033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholine release and choline uptake by cuttlefish (Sepia officinalis) optic lobe synaptosomes.
    Nunes MA; Santos S; Cordeiro JM; Neves P; Silva VS; Sykes A; Morgado F; Dunant Y; Gonçalves PP
    Biol Bull; 2008 Feb; 214(1):1-5. PubMed ID: 18258770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of choline uptake for the synthesis and release of acetylcholine in brain slices by a dynamic autoradiographic technique using [11C]choline.
    Sasaki T; Kawamura K; Tanaka Y; Ando S; Senda M
    Brain Res Brain Res Protoc; 2002 Aug; 10(1):1-11. PubMed ID: 12379431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological characterization of endogenous acetylcholine release from primary septal cultures.
    Auld DS; Day JC; Mennicken F; Quirion R
    J Pharmacol Exp Ther; 2000 Feb; 292(2):692-7. PubMed ID: 10640307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synthesis and release of acetylcholine in normal and denervated rat diaphragms during incubation in vitro.
    Dolezal V; Tucek S
    J Physiol; 1983 Jan; 334():461-74. PubMed ID: 6864565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential impact of genetically modulated choline transporter expression on the release of endogenous versus newly synthesized acetylcholine.
    Iwamoto H; Calcutt MW; Blakely RD
    Neurochem Int; 2016 Sep; 98():138-45. PubMed ID: 27013347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of acetylcholine from rat brain synaptosomes by various agents in the absence of external calcium ions.
    Adam-Vizi V; Ligeti E
    J Physiol; 1984 Aug; 353():505-21. PubMed ID: 6090643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of 4-aminopyridine on acetylcholine release triggered by K+ depolarization, veratridine, or A23187 in rat cerebral cortical synaptosomes.
    Meyer EM; Otero DH
    Neurochem Res; 1989 Feb; 14(2):157-60. PubMed ID: 2542820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of choline efflux results in enhanced acetylcholine synthesis and release in the guinea-pig corticocerebral synaptosomes.
    Pittel Z; Heldman E; Rubinstein R; Cohen S
    Neurochem Int; 1992 Feb; 20(2):219-27. PubMed ID: 1284802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholine synthesis and secretion by LA-N-2 human neuroblastoma cells.
    Richardson UI; Liscovitch M; Blusztajn JK
    Brain Res; 1989 Jan; 476(2):323-31. PubMed ID: 2702472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of [3H]-acetylcholine from the isolated retina of the rat by potassium depolarization: dependence on high affinity choline uptake.
    Massey SC; Neal MJ
    Br J Pharmacol; 1979 Feb; 65(2):271-6. PubMed ID: 760901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.